Table of Contents

DAY= Lo (o T Y 1 o To] o PP PP PP PPPRPPP PP
Chapter 1. INSAllING PYTNON ...t e e e e e e e e et e e e s e s b e e e e e e e e e e nnnnnreeeeeeen)
1.1. WhIiChPYIhONIS FIGNTTOT YOU?. ...ttt e e e e s e e e e e e e e e eeeeeas 2
1.2 PYINONON WINAOWS. ...ttt e ettt e e et e e et e e e e e e e s s b et e e e e e e e e e e s be e e e e e e e e e s e nnnnnreeeaeeas :
1.3 PYINONONIMAC OS Xttt ettt ettt e e e e ettt e e e e e e R e et e e e e e e e e et e e e e e e e R e e e e e e e e annrnes K
1.4, PYINONONIMAC OS ...ttt e e e e e ettt e e e e e e e et e et e e e e e e e e e e e e e e e b n e e e e e e e aanne !
1.5. PYthoNON REAHEAILINUX. ...ttt ettt e e e e s e et e e e e e e e e e e e e e e e annbrn e e e e e e e e e annes 5
1.6.PYthonon DEDIANGNUILINUX........uutiiieiie ettt et e e e e s e e e e e e e e et e e e e e e e e annnnnneeeeeas 6
1.7.PythonInstallationfrom SOUICE...........uuiiiiiieei et e e e e e e e e e e e e s ennnreees 6
1.8. TREINTEIACVESKEIL ..ot e et et e e e e e e e e e e e e e s e sbbrnr e e e e e e e aannns !
R T U 4 10 =TSR
Chapter 2. YOUur First PYthON PrOQIaM..........o oottt e e e e e e e e e e s s b e e e e e e e e e aaes 9
200 R I 11/ 1o T [] o SRR
A B = Tol b T 0 To e g Tox 1 o] o OO PPRPPPRPPPI (
2.3. DOCUMENTINGEUNCHIONS. ...ttt eee ettt e e e e e e e e e e e e s et e et e e e e e e e nn bbb et e e e e e e e nnbbnneeeeeeenaannns 1C
2.4, EVErythingS @nODJECT.uiiieiiiie ettt e 11
RS [06 (=T 0111 0 To @ o [T PR P PP PP PPPPPRRPPPRN 1
2.6. TESUNGVIOAUIES.........eeeiieeeeeee ettt ettt e e e e e e et e e e e e e s R e et e e e e e e s s s bb e s e e e e e e e e e e nnnrrneeeeens 1
Chapter 3. NaliVE DAATYPES. ..o ee e ettt e e e e e o et e e e e s s e e s e e et e e e e e e s R b e e e et e e e e e s e nsbrsee e e e e e e e aannnnnnneeeas 1
I I [[(oo [0l g Te B (et i[o] 0 F= T =T PP PRSP 15
I [11 {00 [[T o IR] TSP PPPPPPPPPPPPN 1
3.3, INTrOAUCINGTUPIES. ...ttt e e e e et e et e e e e e et e e e e e e e e e e b ee e e e e e e e e e e nnnnn e e e aeeas 2
3.4, DECIarNG/ariabIES ..o e e e e e e e e e e a e 2!
S o] 1 4 F= 1L a0 S]] a0 E T TP P PP TPPPPPPR 2!
I G 1Y F=T o] o] g o I) £ PP P PP PPPPPPR 2
3.7. J0ININQLIStS aNASPIITHING STINQS. ... ee e ittt e e e e s s r e e e e e e e s r e e e eeeeaans 28
GG TS TH] 1] 0 1= Y TR z
Chapter 4. TREPOWET Of INtrOSPECTION........eeiiiiieeiiiiiitie it e e ettt e s s nb b e e e e e e e s e aannnnnneeaeeeens 31
I 11V 0 To | o TP PP PP PP PPPPRPPPRPPP K
4.2. UsingOptionalandNaMEOATGUIMENTS.cuiiiiiiiiiriiiiee e e et e e e e e s s e e e e e e s e r e e e e e e s sasbbrnreeeaeeaaanns 32
4.3. Usingtype, str, dir, andOtherBuUilt—IN FUNCLONS............oviiiiiiiiiiiiiiiiieeeeeeeee e 33
4.4, GettingObjeCtReferenCeFVItN GELAL............oi i e e e e 36
T 11 =T g1 0o | B] TP PP PP PPRRPPPPPPN 3
4.6. ThePeculiamNatureof AaNAANTON.............oiiiiiiiiie e e e e e e e e e e e e e e rreeeeas 39
4.7, USINGIaMBABFUNCLIONS........eiiiiiieiiiit et e e e e e e et e e e e e e b e et e e e e e e s nr s e e e e e e e e e annnees 41
4.8. PULLINGIT All TOGEINEL.ot e e et e e e e e e r et e e e e e e s b e e e e e e e e e e e nnneees 4:
E e TS0 0] 4 T= Y/ PP :
Chapter 5. Objectsand ODJECT—OTENTALION.uriiiiiiiiiiieee e e e e s s r e e e e e s s b e e e e e e e e s eannnnees 47
ST I B 1Y/ o | o PP PP P PP PPPRPP PPN £
5.2. ImportingModulesUsingfrom mMOdUIEIMPOIL............uuiiiiiieei e 49
5.3, DEIININGCIASSES. ...t eeeeeeeiiei ettt e e e e e et e e e e e e e e et e e e e e e e bbb e e e e e e e s e a b rnnr e e e e e e e aanne 5
5.4, INSTANTIALINGTIASSES. ...ttt e e et e et e e e e e e e ettt e e e e e e s b e e e et e e e e e e e e e e e e e e e e nnnnees X
5.5. EXPIOrinQUSErDICt A WIaPPEICIASS.uuveeeiieiiiiiiititii e e e ettt e e e e s e e e e e e e e e e e e e s s anbbrnreeeeeeeans 54
5.6. SPECIALCIASSMEINOUS.......eeieiieiiie et eas 5¢
5.7. AdvanceBPecCialClasSMEtNOUScuuii et e e e e e e e e 59

Dive Into Python [

Table of Contents

Chapter 5. Objectsand Object—Orientation

5.8. INtrodUCINGCIASSATIIIDULES.ceieeeii ittt e e e e r et e e e e s e r e e e e e e e e brn e e e e e e e e aannes 60
5.9, PrIVAIEFUNCHIONS ...ttt eeeeeee ettt e e e ettt e e e e e ekt ee e e e e s e s bbb e et e e e e e e o e R e e e et e e e e e e nn b e e e e e e e e e e e nnnnnes 6.
LR O T YU 0] 0 F= VPP TPTTTTTTTRTPRTRTN €
Chapter 6. Exceptionsand File HANAING..........oiii e e e e e e e e s e e e eeeas 64
6.1, HANAINGEXCEPUONS.eeeeeeeeei ittt e ettt e e e e e e e et e e e e e e e et e e e e e e s e nn e e e e e e e e e e e ansnnnneeeaeas 64
6.2. WOrKingWith File ODJECTES.......coiiiiiiieee ettt e e e e e e e e e e e e s 66
6.3. [TEratiNQWItN TOI LOOPS. ... ittt ettt e e e e e et e e e e e e s e et e e e e e e e nnbbnn e e e e e e e aannnn 7C
6.4, USINGSYSIMOUUIESceeeiiiieeii ittt e ettt e e e e s st et e e e e e s bR e e e e e e e e e e b ne e e e e e e e e s e nnnnnneneaeeas 7.
6.5. WOIKINGWILN DIFECIOMES. eeeeeeeee e ettt ettt e e e e e s s et e e e e e e bbb e e e e e e e s e nnbr e e e e e e e e e aanns 74
6.6. PULLINGIL All TOGEINEL. ...ttt e e e e e e e e e e e e s s e e et e e e e e s e nnnnrreeaeas 71
LTS YH |1 0] 0 T= T Y TR 1
Chapter 7. REQUIAIEXDPIESSIONS. uttiiiieeeei ittt e e e e ettt e e e e e s e e e e e e e e s e e et et e e e e e e s s b e s e e et e e e e e e s nnn e e e e e e e e e nannnnrnees 8]
4% T B 1Y/ o | o OO PP PP PPPRTPP PPN €
7.2. CaSEStUAY: SIrEEIAUUINESSES.t e ettt ettt e e e e e et e e e e e s e e e et e e e e e s b e e e e e e e e e nnnrrneees 81
7.3. CaseStudy:ROMANNUMETAISccoiiiiiiiiiei et e e e e e e e s e et e e e e e s e r e e e e e e e s sannbrnreeeeeeeaaanns 83
7.4, USINGNE{N, M} SYNTBX ...ttt e e e e e e e s e e e e e e e e e s bbb e et e e e e e e e nbrnneeeeeeeaaannns 85
7.5. VerDOSEAREQUIAIEXPIESSIONS.......eeiiiiiiiiiittieiee e e e sttt e e e e e e e e et e e e e s e e e e e e e e s s s b b e e e e e e e e s e anbbnnneeeeeeaaans 88
7.6. Casestudy:ParsingPRONENUMDEISo e e e e e e eeeeeeaan 89
A S 101111 0 1= 1Y TR ¢
Chapter 8. HTIML PrOCESSING. ... ttiieiiiittitiitteeee e ettt e e e e e s et e e e e e s e s et e e e e e s s e s s b e e e e et e e e e aa s b b e et e e e e e e s asnbnnneeeeeesaanes 9
S I B 1Y/ o | o OO PP P TP PRPRTTP PPN C
8.2, INtrOAUCINGEGMIIID. DYttt e e e e e e e e e e e e e b e e e e e e e e e e eaeas 9¢
8.3. Extractingdataffom HTML dOCUMENTS..........uuiiiiiiieiiiiiiie ittt e e a e e e 100
8.4. INtroduCiNGBASEH T TIMLPIOCESSOI Y. .. .ceeeeiiiiittee et e e e e e ettt e e e e e e e e e e e e e et r e e e e e e e e e s e e e e e e e e e e nnnees 102
8.5.10CAISANAGIODAIS.......coii it e e e e e e e e e e 10.
8.6. Dictionary—basedtringformatting...........ccouiiiiiiiiiie e 107
8.7. QUOLINGALIIDULEVAIUES ...ttt e e e e e e e e e e e e e e nr e e e e e e e naan 10€
(RS I (a1 foo (8Tl qTe o =1 =Tot B o) VPP R P PR PPPPPPPPRPRRN 10¢
8.9. PULLINGT @l TOGETNE ...ttt e e e e e e e e s e e e e e e e e s e e e e e e e e e annrrnees 11’
8. L0, SUIMIMIBLY. .. oot et e e e oo et oot e e E R E R e st R R e R Rt e e s s s e e s s e e s e e e e e e e e e e e e e e e e e e 11
Chapter 9. XIML PrOCESSING. ... cteeeiiiuittteiieee e et ittt e e e e e s e et e e e e e s s s e e e e e e e e s e s b b e e e e et e e e e s e s b bs e e et e e e e e s s nnbnneeeeeeeennnnnnes 11
S I B AV o | o OO PP PPPPPPPPRTTPN 1]
S e T (=T [T TP P PP PPPPPPPERPPN 1c
SR B - 16511 0o 1| OO PPPPPPPPRPPPP 12
S U [T Lo [T PP PP P TP PPPPPP 1-
9.5. SEArChINGOr EIEMENTS.......eiiiii it e e e e e e e s e nnnrneees 12¢
9.6. ACCESSINEIEMENALIIDULES.cii i e e e e e e e e e e e e e 131
LS T 1 R 1
Chapter 10. SCHPISANG SIIEAMIS........eeiieeiiiiitit et e e et e e e e s et e e e e e e s s e e et e e e e e e s s e e e e e et e e e e s s ansbnsreeeeee s e e nnnnrneeeeeas 13:
10.1. ADSIIACHNANPULSOUITESeeeiiiiiiiteeee e e e e e ettt e e e e s e e et e e e e e e e s et e e e e e e s s s s b ee e et e e e e e e e nsnnb e e e e e eeeeannnnnnnes 133
10.2. StandartPut, OULPUL,ANOEITORuuuueeueeeueeeteeeteeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeeeeeeeeeeeeeeeeeeeeeeereeereeeeereeerereeeees 136
10.3. CaChin@IOUEIOOKUPSttt e e e e e e et e e e e e s e e e e e e e e e s s b n e e e e e e e e aannns 14C
10.4. FindingdireCtChildrenof @NOTE...........uuiiiiieiiiiee e e e e e s e e e e e e anes 141
10.5. Creatingeparatdandlerddy NOUELYPEuu it e e e e 141

Dive Into Python ii

Table of Contents

Chapter 10. Scriptsand Streams

10.6. Handlingcommand—liNGIrQUIMENTS...........uuiiiiiiieeiiiii et e e e e e e e e e e e e e e e s annneeeeeas 143
10.7. PULtINGE @l TOGETNE ...ttt e e e e e s e et e e e e e e r e e e e e e s e ennnnnees 14¢
B0 S T TU g 0 =T o PP 1/
Chapter 11. HTTP WED SEIVICES.......oii ittt e e e e e e e e e e e e e e s s e e e e e e e e s nrneeeeeas 14¢
0 T 5 T 14
11.2. HOWNOttO fetChdataOVeIr HT TR, .. . ittt e e a e e e e e e e e e e e e e e annes 151
I T LU (=T o N I TP PP PEPPP R PPPPPPPPRPPPN 15:
11.4. DebUGQINGHT TP WED SEIVICESuuiiiiiieeiiiiitee ettt e e e e e e e e r e e e e e e s e b e e e e e e e e e e annnees 153
11.5. SEtlNGNEUSEITAGENL. ...ttt e e e e e e e e e e e e e e s b e e e e e e e e e e s b e e e e e e e e e e e e e reaeeas 155
11.6. Handlind-ast—MOdIifI@AANAETAG. ceeeeeiiiiiiiiiii e e e e e e r e e e e e e aaanes 156
N o oo Lo | o g =To] €T ot ST OO PP PRPPPP PPN 15¢
11.8. HaNdliNGEOMPIESSEAALALcceeiiiiiirtiiiie e ettt e e e e e et e e e e e e s r e e e e e e s e e e e e e e e e s aanbnnneeeeeeeaannes 163
11.9. PULtINGE @l TOGETNEI ...t r e e e e e e e e et e e e e e e b e e e e e e e e e nnnneees 16¢
B O YU 0 = o P TTTTTTPTRRPPRTTNE 16
Chapter 12. SOAPWWED SEIVICES......ceiiieiiiiititiee ettt e et e e e e e s e et e e e e e e s e et e e e e e s s s sbne e e e e e e e s e e nnnneneeeeens 16¢
D B I 1Y/ T 1 [PP PP P TP PPPPPPPRRPPP 1€
12.2. InStalliNGNE SOAPLIDIAIIES.ceieiiiee e e e e s 169
12.3. FirSISIEPSIWITN SOAP.....ceeeeeeee ettt e e e e e e et e e e e e e s e e et e e e e e e e b e e e e e e e e e e nnnnnes 171
12.4. DebugginGOAPWED SEIVICESttt e e e e e e e e e r e e e e e e anes 172
12.5. INTFOAUCINGNSDL. ...ttt e e e e e et e e e e e e s e e e et e e e e e e e bnen e e e e e e e e e annnnnn s 17:
12.6. Introspectin®OAPWED Servicesnith WSDL..........ooiiiiiiiiiiieiiee e 174
12.7. SEAICNINEEOOPIE.......coi ittt e e e oo e e e e e e e s e et e e e e e s e bbb e e e e e e e s e b rrnreeeeeeaas 17¢
12.8. TroubleshootiNGOAPWED SEIVICES...........uiiiiiiiieiee e 179
2 U0 0 =T o PSPPI 1€
(O aF= T (=T g R 0 L o 11 B =T o o F TP PR TP PPPPPRRPIN 18
13.1. Introductiorto ROMANNUMETAIS..........uiiiiiiiiiiiee et e e e e e e e e e e r e e e e e e e anes 183
R B B 1Y/ T 1| TP PP PRPTP P PPPPPPPRRPPP 1€
13.3. INtrOAUCINGOMANTEST. Y.+ttt eeeeeeiet ettt e e e e ettt e e e e s e e e e e e e e e e e et e e e e e e ann b e e e et e e e e e annn b b e e e e e e e e e e annnneees 184
R S TS (] [0 [0 GRS [0 TS TP PP PPEPPR PP 18
13,5, TESHUNGON TAIUIE......ce ittt e ettt e e e e e e et e e e e e s e b e e e e e e e e e e e snnr e e e e e e e e e e nnnnenes 18
R ST =TS (] o (0T 0T] TP TP PEPPP R PPPPPPPRRPPPN 19(
Chapter 14. TeSt—FirStPrOGIaMMING.........cuiiieeiiiiiieie e ettt e e e s s e e e e e e s s s e et e e e e e s e nb e e e eeeeeesaannbrnnneeeeesaanns 193
L4, L rOMIAN. PY SEAGEL ... iR R R R R s e s e e e R n e s s e e s e e e e n e e s nnnnnnen e e 19:
14.2.TOM@N.PY SEAGEZ. ... s s R R e R R R R R R R R e R s e e s R e s s e e s e e e s n e e s nnnnnnnn e e 19¢
14, 3. TOMIAN. PY SEAGES ..o E R R R R R R R R R R e R R e e s R e e s s e e s e e e s n e e s nnnnnnnn e e 19¢
I (o g T T 0} V] r= T [PP P TP PP P PP PPPPPPPPPPPPI 20:
14, 5. TOMAN. PY SEAGED. ..o E R R R R R n e e e R s s n e s s e e s s e e e n e e s e nnnnnn e e e 20¢
(04 gF= T (=T g ST =] = T (0] £ o [PPSO PPRTPPP PP 20
ST I o FoT g (o | 1o o] 0o L= PP PP PPPPPPPPPPI 20
15.2. HandlingChangingreQUITEIMENTSuuiiiiiie ettt e e e et e e e e e s e e e e e e e e s e e e e e e e s s annbrnneeeaeeeaannes 210
ST T (] = 1o (o] 1 o o [T TP PO PT PP PPPPPPPPPPPPN 21
TR o L] KT 1 o) TP PTPP P PPPPPPPRRPPP 21
BRI STTU T 10 1 =T o PP 27

Dive Into Python iii

Table of Contents

Chapter 16. FUNCHONAIPIOGIaMIMING .. . eiiiiiiiiiiiiiiie ettt e s e e e e e e s s e e e e e e e e e s s rr e e e e e e e e s annbrnneeeeeesaaannes 223
T I 1Y/ T 1| TP P PP TPP P PPPPPPPPRPPP 22
16.2. FINAINGNEPALN. ...t e oo e et e e e e e s e e e e e e e e e b e e e e e e e e e nnnneees 22
16.3. FilteriNglISTS FEVISITEA. ieeieeieee ettt e e e e e e r e e e e e e s e e e e e e e e e e s s snbnn e e e e e e e e e annns 22¢
16.4. MaPPINGISIS FEVISIEEML.......eeeeeeeeiiiiiit it e ettt e et e e e e e e et e e e e e e b e et e e e e e e e e e e e e e e e s nnnnees 228
16.5. Data—CentriPrOGraMIMING.cooiuuureeeeeeeeesaatttree et e eeeaaaser e e e e e e s s sas s aeereeeeeesaassseeeeeaeeeaaannnnrreeeaeeesaannnnnes 229
16.6. DynamicallimportingMOUUIES..........oooeiiiieiie et e s e e e e s eeeeeas 230
16.7. PULINGE @l TOGETNEI ...t e et e e e e e e r et e e e e e e r e e e e e e e e ennnnnees 23]
GRS T T U0 10 =T o PP 23
Chapter 17. DYNAMUCTUNCIIONS.......ceiiiiiiiii it e ettt e e e e e e e et e e e e e et e e e e e e e s s bber e e e e e e e s aannbnnneeeeeeeaannes 23t
0 T 1Y/ T 1| TSP PTP P PPPPPPPRRPPP 2
N o181 = I o) V] c= T = AT PP P PPPPPPRRI 23!
ORI o] 10T = o) V2] £= T = PP PP PP PR PPPPPPRR 23
R o181 = I o) V2] £= T = C TSP P PP PPPPPPRRI 23
RN o] 10T = I o) V] r= T = TP OP PP P PPPPPPRR 241
O o] 0T = I o) V] £= T = TP OEPP PP PPPPPPRRI 24
O o] 18T = o) V] £= T = PP PP PP PPPPPPRRP 24,
S BT U0 0 =T o PP 24
Chapter 18. PerfOrMaNCETUNINGceeiiiiiittieee e e e e sttt e e e e e s e e e e e e s s s s e e e et e e e e e e s s R s b e et e e e e e e aaannbe e e e e e eeeaaannnrnreeeeeeas 247
R 20 I 1Y/ 5T 1| TP PP PP PPPPPPPRRPPP 2/
18.2. USINGNETIMEIT MOTUIR......eeieiee ettt e e e e s e e e e e e e e e e e e e e e e e nnnees 249
18.3. OptiMIZINGREGUIAIEXPIESSIONS........ieiiiiiieeeee ettt e e et e e e e e e e e e e e e e s e e e e e e e s e s nnbrneeeeeeeeaanes 250
18.4. OptimiZINGDICHONAIY LOOKUPDS.ceeeiiiiiitiie ittt e e e e e e e r et e e e e e e e e e aeas 253
18.5. OptiMIZINGLIST OPEIALIONS ... iiitieeieee ettt e et e e e e e s e e e e e e s s e b e e e e e e e e s s nnnrrreeaeeesaannnnnes 256
18.6. OptimiziNgStHINGMaNIPUIRLIONL.coiiiiiieeii e e e e e e e s e e eeas 258
RS T U g 0 =T o PP 2€
APPENIX A, FUINET TEAUING. ... ettt ettt e oottt e e e e e e e et e e e e e e e n e e e et e e e e e s e snb b s e e e e e e e e e annnnnnneeeas 26
APPENIX B. A SmIMINULE FEVIEW.ceiiiiiiiiiie ettt ettt e e e e s e e e e e e e s e b e e et e e e e e e e snbe e e e e e e e e e e e nnbnnnreeeeenaans 26¢
APPENIX C. TIPS BN IFICKS ...ttt e e e e et e e e e e e e e e e e e e e e e e s b e et e e e e e s e annbbnneeeeeeenanns 28;
APPENTIX D. LISt OF @XAMPIES..... .ottt e e e et e e e e e e e e e e e e e s e bbb e e e e e e e e e e nnnnnneeeeas 28
APPENAIX E. REVISIONNISTONY. ... ettt ettt e e e et e e e e e e e et e e e e e s s s b e e et e e e e e e nn b e e e e e e e e e e annnnrnnees 30:
APPENdiX F. ADOUL tNE DOOK ...t e e e e e e e e e e e e e s b b e e e e e e e aanes 31
Appendix G. GNU Free DOCUMENTAtIONLICENSE.uuiiiiieiiiiiiiie et e e e e e e e e e e s r e e e e e s e e e e aeeas 315
(GO e (== 10] o = PP PP PP PPTPPPPRRRRP 3]
G.1. Applicability anddefiNITIONSeeiiiiei et e e e e e e e e e e e e e e e e e e 315
LT V=T 4 o T= 1 ol0] o)/ o [o TSP PPPPPPPPPPO 31
CRC I Oe]0) a1 oo UE=T o] 111y APPSO PP PPRPPR PP 31¢
(Y T o |1 {0= 14 (o] 4 1< TP PP PPP R PTPPPP 31
G.5. COMBDININGIOCUMENES.ciiiiiett ettt e e e e e e e et e e e e e e s b e e e e e e e e s e s be e e e e e e e e e s nnnnnneeeeeeens 31€
G.6. COlleCtiONSIf AOCUIMEINTSuiiiiiiieei ittt e et e e et e e e e s s e et e e e e e e sb b b e e e e e e e e s annbrnneeeeeenans 318
G.7. Aggregatiomwith INAEPENAEIMIVOTKS.uiiiiii et e e e s e e e e e e e e e eeas 318

Dive Into Python iv

Table of Contents

Appendix G. GNU Free DocumentationLicense

LTS T I = 0 1 =4[] o TP PPPP PSPPI 31
(e T =11 00T (o] o PP P PP TPPPPPPI 31
G.10. FUtur@eVisioNSOf thiS TICENSE.coi it e e e s e e e 319
G.11. Howto usethis Licensefor yoUr dOCUMENTScoiiiuuiiiiiieeee ettt e e e e 319
APPENIX H. PYtNON TICENSE. ... ettt e e e e et e e e e e e e e e e e e e e e e b e e e e e e e e e e e nneeeeas 32
H.A. HiStOry Of tNESOMWATE......cci i e e e e e e e e e s s ea s 32C
H.B. Termsandconditionsfor accessin@r otherwiseusingPython...............coiii e 320

Dive Into Python %

Dive Into Python

20 May 2004
Copyright © 2000, 2001, 2002, 2003, 2004 Mark Pilgrim (mailto:mark@diveintopython.org)
This book lives at http://diveintopython.org/. If you're reading it somewhere else, you may not have the latest versio

Permission is granted to copy, distribute, and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.1 or any later version published by the Free Software Foundation; with no
Invariant Sections, no Front—-Cover Texts, and no Back—Cover Texts. A copy of the license is included in
Appendix G, GNU Free Documentation License.

The example programs in this book are free software; you can redistribute and/or modify them under the terms of tt
Python license as published by the Python Software Foundation. A copy of the license is included in Appendix H,
Python license.

Dive Into Python 1

mailto:mark@diveintopython.org
http://diveintopython.org/

Chapter 1. Installing Python

Welcome to Python. Let's dive in. In this chapter, you'll install the version of Python that's right for you.

1.1. Which Python is right for you?

The first thing you need to do with Python is install it. Or do you?

If you're using an account on a hosted server, your ISP may have already installed Python. Most popular Linux
distributions come with Python in the default installation. Mac OS X 10.2 and later includes a command-line versior
of Python, although you'll probably want to install a version that includes a more Mac-like graphical interface.

Windows does not come with any version of Python, but don't despair! There are several ways to point—and—click
your way to Python on Windows.

As you can see already, Python runs on a great many operating systems. The full list includes Windows, Mac OS,
Mac OS X, and all varieties of free UNIX—compatible systems like Linux. There are also versions that run on Sun
Solaris, AS/400, Amiga, OS/2, BeOS, and a plethora of other platforms you've probably never even heard of.

What's more, Python programs written on one platform can, with a little care, run on any supported platform. For
instance, | regularly develop Python programs on Windows and later deploy them on Linux.

So back to the question that started this section, "Which Python is right for you?" The answer is whichever one runs
on the computer you already have.

1.2. Python on Windows
On Windows, you have a couple choices for installing Python.

ActiveState makes a Windows installer for Python called ActivePython, which includes a complete version of Pythol
an IDE with a Python—aware code editor, plus some Windows extensions for Python that allow complete access to
Windows—specific services, APIs, and the Windows Registry.

ActivePython is freely downloadable, although it is not open source. It is the IDE | used to learn Python, and |
recommend you try it unless you have a specific reason not to. One such reason might be that ActiveState is gener
several months behind in updating their ActivePython installer when new version of Python are released. If you
absolutely need the latest version of Python and ActivePython is still a version behind as you read this, you'll want t
use the second option for installing Python on Windows.

The second option is the "official" Python installer, distributed by the people who develop Python itself. It is freely
downloadable and open source, and it is always current with the latest version of Python.

Procedure 1.1. Option 1: Installing ActivePython
Here is the procedure for installing ActivePython:
1. Download ActivePython from http://www.activestate.com/Products/ActivePython/.
2.If you are using Windows 95, Windows 98, or Windows ME, you will also need to download and install
Windows Installer 2.0
(http://download.microsoft.com/download/WindowslInstaller/Install/2.0/W9XMe/EN-US/InstMsiA.exe)

before installing ActivePython.

Dive Into Python 2

http://www.activestate.com/Products/ActivePython/
http://download.microsoft.com/download/WindowsInstaller/Install/2.0/W9XMe/EN-US/InstMsiA.exe

3. Double—click the installer, ActivePython-2.2.2-224-win32-ix86.msi.

4. Step through the installer program.

5. If space is tight, you can do a custom installation and deselect the documentation, but | don't recommend th
unless you absolutely can't spare the 14MB.

6. After the installation is complete, close the installer and choose Start—>Programs—>ActiveState ActivePytho
2.2->PythonWin IDE. You'll see something like the following:

PythonWin 2.2.2 (#37, Nov 26 2002, 10:24:37) [MSC 32 bit (Intel)] on win32.
Portions Copyright 1994-2001 Mark Hammond (mhammond@skippinet.com.au) —
see 'Help/About PythonWin' for further copyright information.

>>>

Procedure 1.2. Option 2: Installing Python from Python.org (http://www.python.org/)

1. Download the latest Python Windows installer by going to http://www.python.org/ftp/python/ and selecting
the highest version number listed, then downloading the .exe installer.

2. Double—-click the installer, Python—2.xxx.yyy.exe. The name will depend on the version of Python
available when you read this.

3. Step through the installer program.

4. If disk space is tight, you can deselect the HTMLHelp file, the utility scripts (Tools/), and/or the test suite
(Lib/test/).

5. 1f you do not have administrative rights on your machine, you can select Advanced Options, then choose
Non-Admin Install. This just affects where Registry entries and Start menu shortcuts are created.

6. After the installation is complete, close the installer and select Start—>Programs—>Python 2.3—->IDLE (Pytha
GUI). You'll see something like the following:

Python 2.3.2 (#49, Oct 2 2003, 20:02:00) [MSC v.1200 32 bit (Intel)] on win32
Type "copyright”, "credits" or "license()" for more information.

Personal firewall software may warn about the connection IDLE
makes to its subprocess using this computer's internal loopback
interface. This connection is not visible on any external
interface and no data is sent to or received from the Internet.

IDLE 1.0
>>>

1.3. Python on Mac OS X

On Mac OS X, you have two choices for installing Python: install it, or don't install it. You probably want to install it.

Mac OS X 10.2 and later comes with a command-line version of Python preinstalled. If you are comfortable with the
command line, you can use this version for the first third of the book. However, the preinstalled version does not co
with an XML parser, so when you get to the XML chapter, you'll need to install the full version.

Rather than using the preinstalled version, you'll probably want to install the latest version, which also comes with a
graphical interactive shell.

Procedure 1.3. Running the Preinstalled Version of Python on Mac OS X
To use the preinstalled version of Python, follow these steps:
1. Open the /Applications folder.

Dive Into Python 3

http://www.python.org/
http://www.python.org/ftp/python/

2. Open the Utilities folder.
3. Double—click Terminal to open a terminal window and get to a command line.
4. Typepython at the command prompt.

Try it out:

Welcome to Darwin!

[localhost:~] you% python

Python 2.2 (#1, 07/14/02, 23:25:09)

[GCC Apple cpp—precomp 6.14] on darwin

Type "help", "copyright", "credits", or "license" for more information.
>>> [press Ctrl+D to get back to the command prompt]
[localhost:~] you%

Procedure 1.4. Installing the Latest Version of Python on Mac OS X
Follow these steps to download and install the latest version of Python:

1. Download the MacPython—-OSX disk image from http://homepages.cwi.nl/~jack/macpython/download.html.

2. If your browser has not already done so, double—click MacPython—-0OSX-2.3-1.dmg to mount the disk
image on your desktop.

3. Double—click the installer, MacPython—-OSX.pkg.

4. The installer will prompt you for your administrative username and password.

5. Step through the installer program.

6. After installation is complete, close the installer and open the /Applications folder.

7. Open the MacPython-2.3 folder

8. Double—click PythonIDE to launch Python.

The MacPython IDE should display a splash screen, then take you to the interactive shell. If the interactive shell do
not appear, select Window—>Python Interactive (Cmd-0). The opening window will look something like this:

Python 2.3 (#2, Jul 30 2003, 11:45:28)

[GCC 3.1 20020420 (prerelease)]

Type "copyright", "credits" or "license" for more information.
MacPython IDE 1.0.1

>>>

Note that once you install the latest version, the pre—installed version is still present. If you are running scripts from
the command line, you need to be aware which version of Python you are using.

Example 1.1. Two versions of Python

[localhost:~] you% python

Python 2.2 (#1, 07/14/02, 23:25:09)

[GCC Apple cpp—precomp 6.14] on darwin

Type "help", "copyright", "credits", or "license" for more information.
>>> [press Ctrl+D to get back to the command prompt]
[localhost:~] you% /ustr/local/bin/python

Python 2.3 (#2, Jul 30 2003, 11:45:28)

[GCC 3.1 20020420 (prerelease)] on darwin

Type "help", "copyright", "credits", or "license" for more information.
>>> [press Ctrl+D to get back to the command prompt]
[localhost:~] you%

Dive Into Python 4

http://homepages.cwi.nl/~jack/macpython/download.html

1.4. Python on Mac OS 9

Mac OS 9 does not come with any version of Python, but installation is very simple, and there is only one choice.
Follow these steps to install Python on Mac OS 9:

1. Download the MacPython23full.bin file from
http://homepages.cwi.nl/~jack/macpython/download.html.

2. If your browser does not decompress the file automatically, double—click MacPython23full.bin to
decompress the file with Stuffit Expander.

3. Double—click the installer, MacPython23full.

4. Step through the installer program.

5. AFter installation is complete, close the installer and open the /Applications folder.

6. Open the MacPython-0S9 2.3 folder.

7. Double—click Python IDE to launch Python.

The MacPython IDE should display a splash screen, and then take you to the interactive shell. If the interactive she
does not appear, select Window—>Python Interactive (Cmd-0). You'll see a screen like this:

Python 2.3 (#2, Jul 30 2003, 11:45:28)

[GCC 3.1 20020420 (prerelease)]

Type "copyright", "credits" or "license" for more information.
MacPython IDE 1.0.1

>>>

1.5. Python on RedHat Linux

Installing under UNIX-compatible operating systems such as Linux is easy if you're willing to install a binary
package. Pre—built binary packages are available for most popular Linux distributions. Or you can always compile
from source.

Download the latest Python RPM by going to http://www.python.org/ftp/python/ and selecting the highest version
number listed, then selecting the rpms/ directory within that. Then download the RPM with the highest version
number. You can install it with the rpm command, as shown here:

Example 1.2. Installing on RedHat Linux 9

localhost:~$ su -

Password: [enter your root password]

[root@localhost root]# wget http://python.org/ftp/python/2.3/rpms/redhat—9/python2.3-2.3-5pydotorg.i386.rpm
Resolving python.org... done.

Connecting to python.org[194.109.137.226]:80... connected.

HTTP request sent, awaiting response... 200 OK

Length: 7,495,111 [application/octet—stream]

[root@localhost root]# rpm —Uvh python2.3-2.3-5pydotorg.i386.rpm

Preparing... FHHHHHHHHHHHHH A [10090]
1:python2.3 T R [10090)
[root@localhost root]# python (1]

Python 2.2.2 (#1, Feb 24 2003, 19:13:11)

[GCC 3.2.2 20030222 (Red Hat Linux 3.2.2-4)] on linux2

Type "help", "copyright", "credits", or "license" for more information.
>>> [press Ctrl+D to exit]

[root@localhost root]# python2.3 (2]

Dive Into Python 5

http://homepages.cwi.nl/~jack/macpython/download.html
http://www.python.org/ftp/python/

Python 2.3 (#1, Sep 12 2003, 10:53:56)

[GCC 3.2.2 20030222 (Red Hat Linux 3.2.2-5)] on linux2

Type "help", "copyright", "credits", or "license" for more information.
>>> [press Ctrl+D to exit]

[root@localhost root]# which python2.3 (3]
/usr/bin/python2.3

o Whoops! Just typingython gives you the older version of Python —— the one that was installed by
default. That's not the one you want.

@ At the time of this writing, the newest version is calpgthon2.3. You'll probably want to change the
path on the first line of the sample scripts to point to the newer version.

® Thisis the complete path of the newer version of Python that you just installed. Use this on the #! line
(the first line of each script) to ensure that scripts are running under the latest version of Python, and be
sure to typgython2.3 to get into the interactive shell.

1.6. Python on Debian GNU/Linux

If you are lucky enough to be running Debian GNU/Linux, you install Python through the apt command.

Example 1.3. Installing on Debian GNU/Linux

localhost:~$ su —
Password: [enter your root password]
localhost:~# apt—get install python
Reading Package Lists... Done
Building Dependency Tree... Done
The following extra packages will be installed:
python2.3
Suggested packages:
python-tk python2.3-doc
The following NEW packages will be installed:
python python2.3
0 upgraded, 2 newly installed, O to remove and 3 not upgraded.
Need to get 0B/2880kB of archives.
After unpacking 9351kB of additional disk space will be used.
Do you want to continue? [Y/n] Y
Selecting previously deselected package python2.3.
(Reading database ... 22848 files and directories currently installed.)
Unpacking python2.3 (from .../python2.3_2.3.1-1_i386.deb) ...
Selecting previously deselected package python.
Unpacking python (from .../python_2.3.1-1_all.deb) ...
Setting up python (2.3.1-1) ...
Setting up python2.3 (2.3.1-1) ...
Compiling python modules in /usr/lib/python2.3 ...
Compiling optimized python modules in /usr/lib/python2.3 ...
localhost:~# exit
logout
localhost:~$ python
Python 2.3.1 (#2, Sep 24 2003, 11:39:14)
[GCC 3.3.2 20030908 (Debian prerelease)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> [press Ctrl+D to exit]

1.7. Python Installation from Source

If you prefer to build from source, you can download the Python source code from http://www.python.org/ftp/python,
Select the highest version number listed, download the .tgz file), and then do the confidure, make, make

Dive Into Python 6

http://www.python.org/ftp/python/

install dance.

Example 1.4. Installing from source

localhost:~$ su -

Password: [enter your root password]

localhost:~# wget http://www.python.org/ftp/python/2.3/Python-2.3.tgz
Resolving www.python.org... done.

Connecting to www.python.org[194.109.137.226]:80... connected.
HTTP request sent, awaiting response... 200 OK

Length: 8,436,880 [application/x—tar]

localhost:~# tar xfz Python-2.3.tgz
localhost:~# cd Python-2.3
localhost:~/Python—2.3# ./configure
checking MACHDEP... linux2
checking EXTRAPLATDIR...
checking for ——without-gcc... no

localhost:~/Python—2.3# make

gcc —pthread —c —fno-strict—aliasing -DNDEBUG —-g —0O3 —Wall —Wstrict—prototypes
=I. =I./Include -DPy_BUILD_CORE -0 Modules/python.o Modules/python.c

gcc —pthread —c —fno-strict—aliasing -DNDEBUG —g —0O3 -Wall —~Wstrict—prototypes
-I. =l./Include -DPy_BUILD_CORE -o Parser/acceler.o Parser/acceler.c

gcc —pthread —c —fno-strict-aliasing -DNDEBUG —g —0O3 -Wall —~Wstrict—prototypes
-I. =l./Include -DPy_BUILD_CORE -0 Parser/grammarl.o Parser/grammarl.c

localhost:~/Python-2.3# make install
Jusr/bin/install —c python /usr/local/bin/python2.3

localhost:~/Python—-2.3# exit

logout

localhost:~$ which python

/usr/local/bin/python

localhost:~$ python

Python 2.3.1 (#2, Sep 24 2003, 11:39:14)

[GCC 3.3.2 20030908 (Debian prerelease)] on linux2

Type "help", "copyright", "credits" or "license" for more information.
>>> [press Ctrl+D to get back to the command prompt]
localhost:~$

1.8. The Interactive Shell

Now that you have Python installed, what's this interactive shell thing you're running?

It's like this: Python leads a double life. It's an interpreter for scripts that you can run from the command line or run
like applications, by double—clicking the scripts. But it's also an interactive shell that can evaluate arbitrary statemer
and expressions. This is extremely useful for debugging, quick hacking, and testing. | even know some people who

use the Python interactive shell in lieu of a calculator!

Launch the Python interactive shell in whatever way works on your platform, and let's dive in with the steps shown

here:

Example 1.5. First Steps in the Interactive Shell

>>>1+1 0

Dive Into Python

2

>>> print 'hello world' (2]
hello world

>>>x=1 (3]
>>>y =2

>>> X +y

3

The Python interactive shell can evaluate arbitrary Python expressions, including any basic arithmetic
expression.

(1]
® The interactive shell can execute arbitrary Python statements, including the print statement.
(3

You can also assign values to variables, and the values will be remembered as long as the shell is open
(but not any longer than that).

1.9. Summary

You should now have a version of Python installed that works for you.

Depending on your platform, you may have more than one version of Python intsalled. If so, you need to be aware
your paths. If simply typing python on the command line doesn't run the version of Python that you want to use, you
may need to enter the full pathname of your preferred version.

Congratulations, and welcome to Python.

Dive Into Python 8

Chapter 2. Your First Python Program

You know how other books go on and on about programming fundamentals and finally work up to building a
complete, working program? Let's skip all that.

2.1. Diving in
Here is a complete, working Python program.

It probably makes absolutely no sense to you. Don't worry about that, because you're going to dissect it line by line.
But read through it first and see what, if anything, you can make of it.

Example 2.1. odbchelper.py

If you have not already done so, you can download this and other examples
(http://diveintopython.org/download/diveintopython—examples—5.4.zip) used in this book.

def buildConnectionString(params):
""" Build a connection string from a dictionary of parameters.

Returns string.
return ";".join(["%s=%s" % (k, v) for k, v in params.items()])

if _name__=="_main__"
myParams = {"server":"mpilgrim", \
"database":"master", \
"uid":"sa", \
"pwd":"secret" \

print buildConnectionString(myParams)

Now run this program and see what happens.

In the ActivePython IDE oniWindows, you can run the Python program you're editing by choosing File—>Run...
(Ctrl-R). Output is displayed in the interactive window.

In the Python IDE on Mac. ®$, you can run a Python program with Python—>Run window... (Cmd-R), but there is
an important option you must set first. Open the .py file in the IDE, pop up the options menu by clicking the black

triangle in the upper-right corner of the window, and make sure the Run as __main__ option is checked. This is a
per—file setting, but you'll only need to do it once per file.

On UNIX-compatible systeins (including Mac OS X), you can run a Python program from the command line:
python odbchelper.py

The output of odbchelper.py will look like this:
server=mpilgrim;uid=sa;database=master;pwd=secret
2.2. Declaring Functions

Python has functions like most other languages, but it does not have separate header files like C++ or
interface/implementation sections like Pascal. When you need a function, just declare it, like this:

Dive Into Python 9

http://diveintopython.org/download/diveintopython-examples-5.4.zip

def buildConnectionString(params):

Note that the keyword def starts the function declaration, followed by the function name, followed by the arguments
in parentheses. Multiple arguments (not shown here) are separated with commas.

Also note that the function doesn't define a return datatype. Python functions do not specify the datatype of their
return value; they don't even specify whether or not they return a value. In fact, every Python function returns a valt
if the function ever executes a return statement, it will return that value, otherwise it will return None, the Python
null value.

In Visual Basic, functions (that return a value) start with function, and subroutines (that do not return a value)

start with sub. There are no subroutines in Python. Everything is a function, all functions return a value (even if it's
None), and all functions start with def.

The argument, params, doesn't specify a datatype. In Python, variables are never explicitly typed. Python figures o
what type a variable is and keeps track of it internally.

In Java, C++, and other statically-typed languages, you must specify the datatype of the function return value and
each function argument. In Python, you never explicitly specify the datatype of anything. Based on what value you
assign, Python keeps track of the datatype internally.

2.2.1. How Python's Datatypes Compare to Other Programming Languages
An erudite reader sent me this explanation of how Python compares to other programming languages:

statically typed language
A language in which types are fixed at compile time. Most statically typed languages enforce this by requirin
you to declare all variables with their datatypes before using them. Java and C are statically typed language
dynamically typed language
A language in which types are discovered at execution time; the opposite of statically typed. VBScript and
Python are dynamically typed, because they figure out what type a variable is when you first assign it a valu
strongly typed language
A language in which types are always enforced. Java and Python are strongly typed. If you have an integer,
you can't treat it like a string without explicitly converting it.
weakly typed language
A language in which types may be ignored; the opposite of strongly typed. VBScript is weakly typed. In
VBScript, you can concatenate the string '12' and the integer 3 to get the string '123', then treat that as
the integer 123, all without any explicit conversion.

So Python is both dynamically typed (because it doesn't use explicit datatype declarations) and strongly typed (bec
once a variable has a datatype, it actually matters).

2.3. Documenting Functions

You can document a Python function by giving it a doc string.

Example 2.2. Defining the buildConnectionString Function's doc string

def buildConnectionString(params):
""" Build a connection string from a dictionary of parameters.

Dive Into Python 10

Returns string.

Triple quotes signify a multi-line string. Everything between the start and end quotes is part of a single string,
including carriage returns and other quote characters. You can use them anywhere, but you'll see them most often
when defining a doc string.

Triple quotes are also an edasy way to define a string with both single and double quotes, like qg/.../ in Perl.
Everything between the triple quotes is the function's doc string, which documents what the function does. A
doc string, if it exists, must be the first thing defined in a function (that is, the first thing after the colon). You
don't technically need to give your function a doc string, but you always should. | know you've heard this in
every programming class you've ever taken, but Python gives you an added incentive: the doc string is available
at runtime as an attribute of the function.

Many Python IDEs use thezdoc string to provide context—sensitive documentation, so that when you type a
function name, its doc string appears as a tooltip. This can be incredibly helpful, but it's only as good as the doc
strings you write.

Further Reading on Documenting Functions

* PEP 257 (http://www.python.org/peps/pep—0257.html) defines doc string conventions.

* Python Style Guide (http://'www.python.org/doc/essays/styleguide.html) discusses how to write a good doc
string.

* Python Tutorial (http://www.python.org/doc/current/tut/tut.html) discusses conventions for spacing in doc
strings (http://www.python.org/doc/current/tut/node6.htmI#SECTION006750000000000000000).

2.4. Everything Is an Object

In case you missed it, | just said that Python functions have attributes, and that those attributes are available at
runtime.

A function, like everything else in Python, is an object.

Open your favaorite Python IDE and follow along:

Example 2.3. Accessing the buildConnectionString Function's doc string

>>> import odbchelper (1]

>>> params = {"server":"mpilgrim", "database":"master", "uid":"sa", "pwd":"secret"}
>>> print odbchelper.buildConnectionString(params)
server=mpilgrim;uid=sa;database=master;pwd=secret

>>> print odbchelper.buildConnectionString.__doc___ (3]

Build a connection string from a dictionary

Returns string.

Q@ Thefirst line imports the odbchelper program as a module —— a chunk of code that you can use
interactively, or from a larger Python program. (You'll see examples of multi-module Python programs in
Chapter 4.) Once you import a module, you can reference any of its public functions, classes, or attributes.
Modules can do this to access functionality in other modules, and you can do it in the IDE too. This is an
important concept, and you'll talk more about it later.

Dive Into Python 11

http://www.python.org/peps/pep-0257.html
http://www.python.org/doc/essays/styleguide.html
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node6.html#SECTION006750000000000000000

® \When you want to use functions defined in imported modules, you need to include the module name. So you
can't just say buildConnectionString; it must be odbchelper.buildConnectionString. If
you've used classes in Java, this should feel vaguely familiar.

® |nstead of calling the function as you would expect to, you asked for one of the function's attributes, __doc___

import in Python is like require in Perl. Once you import a Python module, you access its functions with
module.function; once you require a Perl module, you access its functions with module::function.

2.4.1. The Import Search Path

Before you go any further, | want to briefly mention the library search path. Python looks in several places when yot
try to import a module. Specifically, it looks in all the directories defined in sys.path. This is just a list, and you
can easily view it or modify it with standard list methods. (You'll learn more about lists later in this chapter.)

Example 2.4. Import Search Path

>>> import sys 1]

>>> sys.path (2]

[, fusr/localllib/python2.2', ‘lusr/local/lib/python2.2/plat-linux2',
‘lusr/local/lib/python2.2/lib—dynload’, '/usr/local/lib/python2.2/site—packages’,
‘lusr/local/lib/python2.2/site—packages/PIL', ‘/usr/local/lib/python2.2/site—packages/piddle’]
>>> sys (3]

<module 'sys' (built=in)>

>>> gys.path.append(/my/new/path’) (4]

® mporting the sys module makes all of its functions and attributes available.

(2 sys.path is a list of directory names that constitute the current search path. (Yours will look different,
depending on your operating system, what version of Python you're running, and where it was originally
installed.) Python will look through these directories (in this order) for a .py file matching the module name
you're trying to import.

(3] Actually, | lied; the truth is more complicated than that, because not all modules are stored as .py files. Some,
like the sys module, are "built—=in modules"; they are actually baked right into Python itself. Built—in modules
behave just like regular modules, but their Python source code is not available, because they are not written i
Python! (The sys module is written in C.)

® You can add a new directory to Python's search path at runtime by appending the directory name to
sys.path, and then Python will look in that directory as well, whenever you try to import a module. The
effect lasts as long as Python is running. (You'll talk more about append and other list methods in Chapter 3.)

2.4.2. What's an Object?

Everything in Python is an object, and almost everything has attributes and methods. All functions have a built-in
attribute __doc__, which returns the doc string defined in the function's source code. The sys module is an
object which has (among other things) an attribute called path. And so forth.

Still, this begs the question. What is an object? Different programming languages define "object" in different ways. |
some, it means that all objects must have attributes and methods; in others, it means that all objects are subclassal
In Python, the definition is looser; some objects have neither attributes nor methods (more on this in Chapter 3), an
not all objects are subclassable (more on this in Chapter 5). But everything is an object in the sense that it can be
assigned to a variable or passed as an argument to a function (more in this in Chapter 4).

This is so important that I'm going to repeat it in case you missed it the first few times: everything in Python is an
object. Strings are objects. Lists are objects. Functions are objects. Even modules are objects.

Dive Into Python 12

Further Reading on Obijects

« Python Reference Manual (http://www.python.org/doc/current/ref/) explains exactly what it means to say tha
everything in Python is an object (http://www.python.org/doc/current/ref/objects.html), because some people
are pedantic and like to discuss this sort of thing at great length.

« eff-bot (http://www.effbot.org/guides/) summarizes Python objects
(http:/Iwww.effbot.org/guides/python—-objects.htm).

2.5. Indenting Code

Python functions have no explicit begin or end, and no curly braces to mark where the function code starts and
stops. The only delimiter is a colon (:) and the indentation of the code itself.

Example 2.5. Indenting the buildConnectionString Function

def buildConnectionString(params):
""" Build a connection string from a dictionary of parameters.

Returns string.
return ";".join(["%s=%s" % (k, v) for k, v in params.items()])

Code blocks are defined by their indentation. By "code block”, | mean functions, if statements, for loops, while
loops, and so forth. Indenting starts a block and unindenting ends it. There are no explicit braces, brackets, or
keywords. This means that whitespace is significant, and must be consistent. In this example, the function code
(including the doc string) is indented four spaces. It doesn't need to be four spaces, it just needs to be consistent.
The first line that is not indented is outside the function.

Example 2.6, if Statements shows an example of code indentation with if statements.

Example 2.6. if Statements

def fib(n):
print'n =" n
ifn>1:
return n * fib(n - 1)
else:
print 'end of the line'
return 1

o o0e

This is a function named fib that takes one argument, n. All the code within the function is indented.

Printing to the screen is very easy in Python, just use print. print statements can take any data

type, including strings, integers, and other native types like dictionaries and lists that you'll learn about
in the next chapter. You can even mix and match to print several things on one line by using a
comma-separated list of values. Each value is printed on the same line, separated by spaces (the
commas don't print). So when fib is called with 5, this will print "n = 5".

©® if statements are a type of code block. If the if expression evaluates to true, the indented block is
executed, otherwise it falls to the else block.

@ Of course if and else blocks can contain multiple lines, as long as they are all indented the same
amount. This else block has two lines of code in it. There is no other special syntax for multi-line
code blocks. Just indent and get on with your life.

®ee

Dive Into Python 13

http://www.python.org/doc/current/ref/
http://www.python.org/doc/current/ref/objects.html
http://www.effbot.org/guides/
http://www.effbot.org/guides/python-objects.htm

After some initial protests and several snide analogies to Fortran, you will make peace with this and start seeing its
benefits. One major benefit is that all Python programs look similar, since indentation is a language requirement an
not a matter of style. This makes it easier to read and understand other people's Python code.

Python uses carriage returAas/to separate statements and a colon and indentation to separate code blocks. C++ ant
Java use semicolons to separate statements and curly braces to separate code blocks.

Further Reading on Code Indentation

» Python Reference Manual (http://www.python.org/doc/current/ref/) discusses cross—platform indentation
issues and shows various indentation errors (http://www.python.org/doc/current/ref/indentation.html).
» Python Style Guide (http://www.python.org/doc/essays/styleguide.html) discusses good indentation style.

2.6. Testing Modules

Python modules are objects and have several useful attributes. You can use this to easily test your modules as you
write them. Here's an example that uses the ifname___trick.

if _name__==" main__":

Some quick observations before you get to the good stuff. First, parentheses are not required around the if
expression. Second, the if statement ends with a colon, and is followed by indented code.

Like C, Python uses == fore&€omparison and = for assignment. Unlike C, Python does not support in—line assignmer
so there's no chance of accidentally assigning the value you thought you were comparing.

So why is this particular if statement a trick? Modules are objects, and all modules have a built-in attribute
__name__. Amodule's __name__ depends on how you're using the module. If you import the module, then
__name___is the module's filename, without a directory path or file extension. But you can also run the module
directly as a standalone program, in which case __name__ will be a special default value, __main__.

>>> import odbchelper
>>> odbchelper.__name__
‘odbchelper’

Knowing this, you can design a test suite for your module within the module itself by putting it in this if statement.
When you run the module directly, name__is __main__, so the test suite executes. When you import the
module, __name___is something else, so the test suite is ignored. This makes it easier to develop and debug new
modules before integrating them into a larger program.

On MacPython, there is aniadditional step to make the ihame___trick work. Pop up the module's options menu
by clicking the black triangle in the upper-right corner of the window, and make sure Run as __main___is checked.

Further Reading on Importing Modules

» Python Reference Manual (http://www.python.org/doc/current/ref/) discusses the low-level details of
importing modules (http://www.python.org/doc/current/ref/import.html).

Dive Into Python 14

http://www.python.org/doc/current/ref/
http://www.python.org/doc/current/ref/indentation.html
http://www.python.org/doc/essays/styleguide.html
http://www.python.org/doc/current/ref/
http://www.python.org/doc/current/ref/import.html

Chapter 3. Native Datatypes

You'll get back to your first Python program in just a minute. But first, a short digression is in order, because you ne
to know about dictionaries, tuples, and lists (oh my!). If you're a Perl hacker, you can probably skim the bits about
dictionaries and lists, but you should still pay attention to tuples.

3.1. Introducing Dictionaries

One of Python's built-in datatypes is the dictionary, which defines one—to—one relationships between keys and valt

A dictionary in Python is likeé a hash in Perl. In Perl, variables that store hashes always start with a % character. In
Python, variables can be named anything, and Python keeps track of the datatype internally.

A dictionary in Python is likeé an instance of the Hashtable class in Java.

A dictionary in Python is likeé an instance of the Scripting.Dictionary object in Visual Basic.
3.1.1. Defining Dictionaries

Example 3.1. Defining a Dictionary

>>> d = {"server":"mpilgrim", "database":"master"} (1]
>>>d

{'server" 'mpilgrim’, 'database': 'master’}

>>> d["server”] (2]
‘mpilgrim’

>>> d["database"] (3]
‘master’

>>> d["mpilgrim”] (4]

Traceback (innermost last):
File "<interactive input>", line 1, in ?
KeyError: mpilgrim

Q9 st you create a new dictionary with two elements and assign it to the variable d. Each element is a
key—-value pair, and the whole set of elements is enclosed in curly braces.

® 'server is a key, and its associated value, referenced by d["server"], is 'mpilgrim’.
® 'database'is a key, and its associated value, referenced by d["'database"], is ‘'master".

@ vYoucan get values by key, but you can't get keys by value. So d["server"] is 'mpilgrim’, but
d["mpilgrim"] raises an exception, because 'mpilgrim' is not a key.

3.1.2. Modifying Dictionaries

Example 3.2. Modifying a Dictionary

>>>d

{'server": 'mpilgrim', 'database": 'master’}

>>> d["database"] = "pubs"

>>>d

{'server": 'mpilgrim’, 'database": 'pubsé

>>> d["uid"] = "sa"

>>>d

{'server": 'mpilgrim’, 'uid: 'sa’, 'database": 'pubs'}

Dive Into Python 15

@ You can not have duplicate keys in a dictionary. Assigning a value to an existing key will wipe out the
old value.
® vou can add new key-value pairs at any time. This syntax is identical to modifying existing values. (Yes,
this will annoy you someday when you think you are adding new values but are actually just modifying
the same value over and over because your key isn't changing the way you think it is.)
Note that the new element (key 'uid’, value 'sa') appears to be in the middle. In fact, it was just a coincidence
that the elements appeared to be in order in the first example; it is just as much a coincidence that they appear to b
out of order now.

Dictionaries have no concept of order among elements. It is incorrect to say that the elements are "out of order"; th
are simply unordered. This is an important distinction that will annoy you when you want to access the elements of
dictionary in a specific, repeatable order (like alphabetical order by key). There are ways of doing this, but they're n
built into the dictionary.

When working with dictionaries, you need to be aware that dictionary keys are case-sensitive.

Example 3.3. Dictionary Keys Are Case—Sensitive

>>>d = {}

>>> d["key"] = "value"

>>> d["key"] = "other value" (1]
>>>d

{key'": 'other value'}

>>> d['Key"] = "third value" (2]
>>>d

{'Key" 'third value', 'key": 'other value'}

o Assigning a value to an existing dictionary key simply replaces the old value with a new one.

® This is not assigning a value to an existing dictionary key, because strings in Python are case—sensitive, so
'key' is not the same as 'Key'. This creates a new key/value pair in the dictionary; it may look similar to
you, but as far as Python is concerned, it's completely different.

Example 3.4. Mixing Datatypes in a Dictionary

>>>d

{'server": 'mpilgrim’, 'uid": 'sa’, 'database": 'pubs'}

>>> d["retrycount"] = 3

>>>d

{'server": 'mpilgrim’, 'uid": 'sa’, 'database": 'master’, 'retrycount: 3}
>>> d[42] = "douglas"

>>>d

{'server": 'mpilgrim', 'uid": 'sa’, 'database': 'master’,

42:'douglas’, 'retrycount': 3}

® Dictionaries aren't just for strings. Dictionary values can be any datatype, including strings, integers,
objects, or even other dictionaries. And within a single dictionary, the values don't all need to be the
same type; you can mix and match as needed.

124 Dictionary keys are more restricted, but they can be strings, integers, and a few other types. You can also
mix and match key datatypes within a dictionary.

Dive Into Python 16

3.1.3. Deleting Items From Dictionaries

Example 3.5. Deleting Items from a Dictionary

>>>d

{'server": 'mpilgrim’, 'uid": 'sa’, 'database": 'master’,

42: 'douglas', 'retrycount": 3}

>>> del d[42]

>>>d

{'server": 'mpilgrim’, 'uid": 'sa’, 'database": 'master’, 'retrycount’: 3}
>>> d.clear()

>>>d

{

Q dellets you delete individual items from a dictionary by key.

@ clear deletes all items from a dictionary. Note that the set of empty curly braces signifies a dictionary without
any items.

Further Reading on Dictionaries

* How to Think Like a Computer Scientist (http://www.ibiblio.org/obp/thinkCSpy/) teaches about dictionaries
and shows how to use dictionaries to model sparse matrices
(http://www.ibiblio.org/obp/thinkCSpy/chap10.htm).

» Python Knowledge Base (http://www.fagts.com/knowledge—base/index.phtml/fid/199/) has a lot of example
code using dictionaries (http://www.faqgts.com/knowledge-base/index.phtml/fid/541).

» Python Cookbook (http://www.activestate.com/ASPN/Python/Cookbook/) discusses how to sort the values ¢
a dictionary by key (http://www.activestate.com/ASPN/Python/Cookbook/Recipe/52306).

» Python Library Reference (http://www.python.org/doc/current/lib/) summarizes all the dictionary methods
(http://www.python.org/doc/current/lib/typesmapping.html).

3.2. Introducing Lists

Lists are Python's workhorse datatype. If your only experience with lists is arrays in Visual Basic or (God forbid) the
datastore in Powerbuilder, brace yourself for Python lists.

A list in Python is like an array in Perl. In Perl, variables that store arrays always start with the @ character; in
Python, variables can be named anything, and Python keeps track of the datatype internally.

A list in Python is much mere than an array in Java (although it can be used as one if that's really all you want out ¢
life). A better analogy would be to the ArrayList class, which can hold arbitrary objects and can expand
dynamically as new items are added.

3.2.1. Defining Lists

Example 3.6. Defining a List

>>> i =["a", "b", "mpilgrim", "z", "example"] 1)
>>> |

[a', 'b', ‘'mpilgrim’, 'z', 'example’]

>>> 1i[0] (2]
-

>>> |i[4] ©
‘example’

Dive Into Python 17

http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/chap10.htm
http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/index.phtml/fid/541
http://www.activestate.com/ASPN/Python/Cookbook/
http://www.activestate.com/ASPN/Python/Cookbook/Recipe/52306
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/typesmapping.html

Q9 First, you define a list of five elements. Note that they retain their original order. This is not an accident. A list
is an ordered set of elements enclosed in square brackets.

@ Alist can be used like a zero-based array. The first element of any non—-empty list is always li[0].
® The last element of this five—element list is li[4], because lists are always zero—based.

Example 3.7. Negative List Indices

>>> |j

>>> |i[-1]
‘example’
>>> [i[-3] (2]

‘mpilgrim'’

9 A negative index accesses elements from the end of the list counting backwards. The last element of
any non—-empty list is always li[-1].

O fthe negative index is confusing to you, think of it this way: li[—n] == li[len(li) — n]. So
in this list, li[-3] == li[5 — 3] == li[2].

Example 3.8. Slicing a List

>>> |i
['a', 'b', 'mpilgrim’, ‘example']
>>> |i[1:3]

7
(1]
['b', 'mpilgrim’]

>>> [i[1:-1] (2]
['b', 'mpilgrim’, ']
>>> [i[0:3] (3]

©® voucan get a subset of a list, called a "slice", by specifying two indices. The return value is a new list
containing all the elements of the list, in order, starting with the first slice index (in this case li[1]), up to but
not including the second slice index (in this case li[3]).

(2 Slicing works if one or both of the slice indices is negative. If it helps, you can think of it this way: reading the
list from left to right, the first slice index specifies the first element you want, and the second slice index
specifies the first element you don't want. The return value is everything in between.

® Lists are zero-based, so li[0:3] returns the first three elements of the list, starting at li[0], up to but not
including li[3].

Example 3.9. Slicing Shorthand

>>> |

[@a,'b', 'mpilgrim’, 'z', 'example’]
>>> [i[:3] (1]

[, 'b', 'mpilgrim’]

>>> i[3:]

[z', 'example’]

>>> [i[]

@ if the left slice index is 0, you can leave it out, and 0 is implied. So li[:3] is the same as |i[0:3] from
Example 3.8, Slicing a List .

(2 Similarly, if the right slice index is the length of the list, you can leave it out. So li[3:] is the same as
li[3:5], because this list has five elements.

Dive Into Python 18

©® Note the symmetry here. In this five—element list, li[:3] returns the first 3 elements, and li[3:] returns
the last two elements. In fact, li[:n] will always return the first n elements, and li[n:] will return the rest,
regardless of the length of the list.

© f both slice indices are left out, all elements of the list are included. But this is not the same as the original li
list; it is a new list that happens to have all the same elements. li[:] is shorthand for making a complete copy
of a list.

3.2.2. Adding Elements to Lists

Example 3.10. Adding Elements to a List

>>> |i

[, 'b', 'mpilgrim’, 'z, 'example’]

>>> li.append("new") (1]
>>> i

['a', 'b', 'mpilgrim’, 'z', ‘'example’, 'new']

>>> li.insert(2, "new") (2]
>>> |j

[a', 'b', 'new', 'mpilgrim’, 'z, 'example’, 'new']

>>> |i.extend(["two", "elements"]) (3]
>>> |i

o append adds a single element to the end of the list.

® insertinserts a single element into a list. The numeric argument is the index of the first element that gets
bumped out of position. Note that list elements do not need to be unique; there are now two separate element
with the value 'new’, li[2] and li[6].

® extend concatenates lists. Note that you do not call extend with multiple arguments; you call it with one
argument, a list. In this case, that list has two elements.

Example 3.11. The Difference between extend and append

>>>li=[4a, b, 'c

>>> |i.extend(['d’, 'e', 'f]) 1]
>>> |i

[a, b, 'c, 'd, e, 'f]

>>> len(li) (2]
6

>>> |i[-1]

f
>>>li=[a, b, 'c]

>>> li.append(['d’, ', ']) (3]
>>> i

[a, b, c, [d, ‘e, f]]

>>> len(li) (4
4

>>> [i[-1]

[d', ‘e, 'f]

@ |ists have two methods, extend and append, that look like they do the same thing, but are in fact
completely different. extend takes a single argument, which is always a list, and adds each of the
elements of that list to the original list.

O Here you started with a list of three elements (‘a’, 'b', and 'c'), and you extended the list with a list
of another three elements ('d', 'e’, and 'f"), so you now have a list of six elements.
(3]

Dive Into Python 19

On the other hand, append takes one argument, which can be any data type, and simply adds it to the
end of the list. Here, you're calling the append method with a single argument, which is a list of three
elements.

Q@ Nowthe original list, which started as a list of three elements, contains four elements. Why four? Because
the last element that you just appended is itself a list. Lists can contain any type of data, including other
lists. That may be what you want, or maybe not. Don't use append if you mean extend.

3.2.3. Searching Lists

Example 3.12. Searching a List

>>> |i

>>> |i.index("example")

5
>>> [i.index("new") (2]
2
>>> |i.index("c") (3]

Traceback (innermost last):

File "<interactive input>", line 1, in ?
ValueError: list.index(x): x not in list
>>>"c"inli
False

@ index finds the first occurrence of a value in the list and returns the index.

® index finds the first occurrence of a value in the list. In this case, 'new' occurs twice in the list, in li[2]
and li[6], but index will return only the first index, 2.

® |f the value is not found in the list, Python raises an exception. This is notably different from most languages,
which will return some invalid index. While this may seem annoying, it is a good thing, because it means your
program will crash at the source of the problem, rather than later on when you try to use the invalid index.

© 70 test whether a value is in the list, use in, which returns True if the value is found or False if it is not.

Before version 2.2.1, Pythen had no separate boolean datatype. To compensate for this, Python accepted almost
anything in a boolean context (like an if statement), according to the following rules:

* O is false; all other numbers are true.

* An empty string (") is false, all other strings are true.

* An empty list ([]) is false; all other lists are true.

* An empty tuple (()) is false; all other tuples are true.

» An empty dictionary ({}) is false; all other dictionaries are true.

These rules still apply in Python 2.2.1 and beyond, but now you can also use an actual boolean, which has a value
True or False. Note the capitalization; these values, like everything else in Python, are case—sensitive.

3.2.4. Deleting List Elements

Example 3.13. Removing Elements from a List

>>> |

>>> li.remove("z")
>>> |j

>>> [i.remove("new")

Dive Into Python 20

>>> |i

>>> li.remove('c")
Traceback (innermost last):

File "<interactive input>", line 1, in ?
ValueError: list.remove(x): X not in list

>>> li.pop()
‘elements'
>>> |

remove removes the first occurrence of a value from a list.

remove removes only the first occurrence of a value. In this case, 'new' appeared twice in the list, but
li.remove("new") removed only the first occurrence.

If the value is not found in the list, Python raises an exception. This mirrors the behavior of the index method.

pop is an interesting beast. It does two things: it removes the last element of the list, and it returns the value
that it removed. Note that this is different from li[—1], which returns a value but does not change the list, and
different from li.remove(value), which changes the list but does not return a value.

3.2.5. Using List Operators

oC® ©o©e

Example 3.14. List Operators

>>> |i = |i + ['example’, 'new’] 1]
>>> |

[@, 'b', 'mpilgrim’, 'example’, 'new']

>>> | += ['two’] (2]
>>> |

>>>[i=[1,2]*3
>>> |i
[1,2,1,2,1,2]

@ |ists can also be concatenated with the + operator. list = list + otherlist has the
same result as list.extend(otherlist). But the + operator returns a new (concatenated)
list as a value, whereas extend only alters an existing list. This means that extend is faster,
especially for large lists.

124 Python supports the += operator. li += [two'] is equivalent to li.extend(['two").
The += operator works for lists, strings, and integers, and it can be overloaded to work for
user—defined classes as well. (More on classes in Chapter 5.)

©® Ther operator works on lists as a repeater. li = [1, 2] * 3 is equivalent to li = [1,
2] +[1, 2] + [1, 2], which concatenates the three lists into one.

Further Reading on Lists

« How to Think Like a Computer Scientist (http://www.ibiblio.org/obp/thinkCSpy/) teaches about lists and
makes an important point about passing lists as function arguments
(http://www.ibiblio.org/obp/thinkCSpy/chap08.htm).

» Python Tutorial (http://www.python.org/doc/current/tut/tut.html) shows how to use lists as stacks and queues
(http://wvww.python.org/doc/current/tut/node7.htmI#SECTION007110000000000000000).

» Python Knowledge Base (http://www.fagts.com/knowledge—base/index.phtml/fid/199/) answers common
guestions about lists (http://www.fagts.com/knowledge-base/index.phtml/fid/534) and has a lot of example
code using lists (http://www.faqgts.com/knowledge-base/index.phtml/fid/540).

Dive Into Python 21

http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/chap08.htm
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node7.html#SECTION007110000000000000000
http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/index.phtml/fid/534
http://www.faqts.com/knowledge-base/index.phtml/fid/540

« Python Library Reference (http://www.python.org/doc/current/lib/) summarizes all the list methods
(http://www.python.org/doc/current/lib/typesseq—mutable.html).

3.3. Introducing Tuples

A tuple is an immutable list. A tuple can not be changed in any way once it is created.

Example 3.15. Defining a tuple

>>>t = ("a", "b", "mpilgrim", "z", "example") 0
>>>t

>>> {[0]

-

>>> {[-1]

‘example’

>>> {[1:3]

('b', 'mpilgrim’)

© ® ©®

9 A tuple is defined in the same way as a list, except that the whole set of elements is enclosed in parentheses
instead of square brackets.

The elements of a tuple have a defined order, just like a list. Tuples indices are zero—based, just like a list, so
the first element of a non—empty tuple is always t[0].

(2]
© Negative indices count from the end of the tuple, just as with a list.
(4

Slicing works too, just like a list. Note that when you slice a list, you get a new list; when you slice a tuple, you
get a new tuple.

Example 3.16. Tuples Have No Methods

>>>t
>>> t.append("new")
Traceback (innermost last):
File "<interactive input>", line 1, in ?
AttributeError: 'tuple' object has no attribute ‘append’
>>> t.remove("z")
Traceback (innermost last):
File "<interactive input>", line 1, in ?
AttributeError: 'tuple' object has no attribute ‘remove’
>>> t.index("example™)
Traceback (innermost last):
File "<interactive input>", line 1, in ?
AttributeError: 'tuple' object has no attribute 'index’
>>>"z"int
True

©® You can't add elements to a tuple. Tuples have no append or extend method.
® You can't remove elements from a tuple. Tuples have no remove or pop method.
® vou cantfind elements in a tuple. Tuples have no index method.

@ You can, however, use in to see if an element exists in the tuple.
So what are tuples good for?

 Tuples are faster than lists. If you're defining a constant set of values and all you're ever going to do with it i

Dive Into Python 22

http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/typesseq-mutable.html

iterate through it, use a tuple instead of a list.

« It makes your code safer if you "write—protect” data that does not need to be changed. Using a tuple insteac
a list is like having an implied assert statement that shows this data is constant, and that special thought
(and a specific function) is required to override that.

« Remember that | said that dictionary keys can be integers, strings, and "a few other types"? Tuples are one
those types. Tuples can be used as keys in a dictionary, but lists can't be used this way.Actually, it's more
complicated than that. Dictionary keys must be immutable. Tuples themselves are immutable, but if you hav
a tuple of lists, that counts as mutable and isn't safe to use as a dictionary key. Only tuples of strings, numbs
or other dictionary—safe tuples can be used as dictionary keys.

« Tuples are used in string formatting, as you'll see shortly.

Tuples can be converted intolists, and vice—versa. The built-in tuple function takes a list and returns a tuple with
the same elements, and the list function takes a tuple and returns a list. In effect, tuple freezes a list, and list
thaws a tuple.

Further Reading on Tuples

* How to Think Like a Computer Scientist (http://www.ibiblio.org/obp/thinkCSpy/) teaches about tuples and
shows how to concatenate tuples (http://www.ibiblio.org/obp/thinkCSpy/chap10.htm).

» Python Knowledge Base (http://www.fagts.com/knowledge—base/index.phtml/fid/199/) shows how to sort a
tuple (http://www.fagts.com/knowledge-base/view.phtml/aid/4553/fid/587).

« Python Tutorial (http://www.python.org/doc/current/tut/tut.html) shows how to define a tuple with one
element (http://www.python.org/doc/current/tut/node7.html#SECTION007300000000000000000).

3.4. Declaring variables

Now that you know something about dictionaries, tuples, and lists (oh my!), let's get back to the sample program frc
Chapter 2, odbchelper.py.

Python has local and global variables like most other languages, but it has no explicit variable declarations. Variabl
spring into existence by being assigned a value, and they are automatically destroyed when they go out of scope.

Example 3.17. Defining the myParams Variable

if _name__=="_ main__":
myParams = {"server":"mpilgrim", \
"database":"master", \
"uid":"sa", \
"pwd":"secret" \

}

Notice the indentation. An if statement is a code block and needs to be indented just like a function.

Also notice that the variable assignment is one command split over several lines, with a backslash ("\") serving as a
line—continuation marker.

When a command is split'@among several lines with the line—continuation marker ("\"), the continued lines can be
indented in any manner; Python's normally stringent indentation rules do not apply. If your Python IDE auto-indent:
the continued line, you should probably accept its default unless you have a burning reason not to.

Dive Into Python 23

http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/chap10.htm
http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/view.phtml/aid/4553/fid/587
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node7.html#SECTION007300000000000000000

Strictly speaking, expressions in parentheses, straight brackets, or curly braces (like defining a dictionary) can be s|
into multiple lines with or without the line continuation character ("\"). I like to include the backslash even when it's
not required because | think it makes the code easier to read, but that's a matter of style.

Third, you never declared the variable myParams, you just assigned a value to it. This is like VBScript without the
option explicit option. Luckily, unlike VBScript, Python will not allow you to reference a variable that has
never been assigned a value; trying to do so will raise an exception.

3.4.1. Referencing Variables

Example 3.18. Referencing an Unbound Variable

>>> X
Traceback (innermost last):

File "<interactive input>", line 1, in ?
NameError: There is no variable named 'x'
>>> =1
>>> X
1

You will thank Python for this one day.

3.4.2. Assigning Multiple Values at Once

One of the cooler programming shortcuts in Python is using sequences to assign multiple values at once.

Example 3.19. Assigning multiple values at once

>>>v=(a,'b,'e)

>>> (X, Y,2)=V (1]
>>> X

-

>>> y

b

>>> 7

e

Q@ visa tuple of three elements, and (x, y, z) is a tuple of three variables. Assigning one to the other
assigns each of the values of v to each of the variables, in order.

This has all sorts of uses. | often want to assign names to a range of values. In C, you would use enum and manua
list each constant and its associated value, which seems especially tedious when the values are consecutive. In Py
you can use the built-in range function with multi-variable assignment to quickly assign consecutive values.

Example 3.20. Assigning Consecutive Values

>>> range(7) (1]
[0,1,2,3,4,5, 6]

>>> (MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY) = range(7) (2]
>>> MONDAY (3]
0

>>> TUESDAY

1

>>> SUNDAY

Dive Into Python 24

@ The built-in range function returns a list of integers. In its simplest form, it takes an upper limit and returns a
zero—based list counting up to but not including the upper limit. (If you like, you can pass other parameters to
specify a base other than 0 and a step other than 1. You can print range.__doc___for details.)

® MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, and SUNDAY are the variables y«
defining. (This example came from the calendar module, a fun little module that prints calendars, like the
UNIX program cal. The calendar module defines integer constants for days of the week.)

® Now each variable has its value: MONDAY is 0, TUESDAY is 1, and so forth.

You can also use multi-variable assignment to build functions that return multiple values, simply by returning a tupl
of all the values. The caller can treat it as a tuple, or assign the values to individual variables. Many standard Pytho
libraries do this, including the os module, which you'll discuss in Chapter 6.

Further Reading on Variables

* Python Reference Manual (http://www.python.org/doc/current/ref/) shows examples of when you can skip th
line continuation character (http://www.python.org/doc/current/ref/implicit—joining.html) and when you need
to use it (http://www.python.org/doc/current/ref/explicit—joining.html).

* How to Think Like a Computer Scientist (http://www.ibiblio.org/obp/thinkCSpy/) shows how to use
multi-variable assignment to swap the values of two variables
(http://www.ibiblio.org/obp/thinkCSpy/chap09.htm).

3.5. Formatting Strings

Python supports formatting values into strings. Although this can include very complicated expressions, the most
basic usage is to insert values into a string with the %s placeholder.

String formatting in Pythonaises the same syntax as the sprintf function in C.

Example 3.21. Introducing String Formatting

>>> k = "uid"

>>>y ="sa"

>>> "%s=%s" % (k, v) (1]
'uid=sa'

©® The whole expression evaluates to a string. The first %s is replaced by the value of k; the second %s is repla
by the value of v. All other characters in the string (in this case, the equal sign) stay as they are.

Note that (k, v) is a tuple. | told you they were good for something.
You might be thinking that this is a lot of work just to do simple string concatentation, and you would be right, excer
that string formatting isn't just concatenation. It's not even just formatting. It's also type coercion.

Example 3.22. String Formatting vs. Concatenating

>>> uid = "sa"
>>> pwd = "secret"

>>> print pwd + " is not a good password for " + uid (1]
secret is not a good password for sa
>>> print "%s is not a good password for %s" % (pwd, uid) (2]

Dive Into Python 25

http://www.python.org/doc/current/ref/
http://www.python.org/doc/current/ref/implicit-joining.html
http://www.python.org/doc/current/ref/explicit-joining.html
http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/chap09.htm

secret is not a good password for sa
>>> userCount = 6

>>> print "Users connected: %d" % (userCount,) ©0
Users connected: 6
>>> print "Users connected: " + userCount (5

Traceback (innermost last):
File "<interactive input>", line 1, in ?
TypeError: cannot concatenate 'str' and 'int' objects

Q +isthe string concatenation operator.
® |n this trivial case, string formatting accomplishes the same result as concatentation.

© (userCount,) is a tuple with one element. Yes, the syntax is a little strange, but there's a good reason for
it: it's unambiguously a tuple. In fact, you can always include a comma after the last element when defining a
list, tuple, or dictionary, but the comma is required when defining a tuple with one element. If the comma
weren't required, Python wouldn't know whether (userCount) was a tuple with one element or just the value
of userCount.

o String formatting works with integers by specifying %d instead of %s.

15/ Trying to concatenate a string with a non—string raises an exception. Unlike string formatting, string
concatenation works only when everything is already a string.

As with printf in C, string formatting in Python is like a Swiss Army knife. There are options galore, and modifier
strings to specially format many different types of values.

Example 3.23. Formatting Numbers

>>> print "Today's stock price: %f" % 50.4625 (1]
50.462500

>>> print "Today's stock price: %.2f" % 50.4625 (2]
50.46

>>> print "Change since yesterday: %+.2f" % 1.5 (3]
+1.50

© The %f string formatting option treats the value as a decimal, and prints it to six decimal places.
® The ".2" modifier of the %f option truncates the value to two decimal places.

® You can even combine modifiers. Adding the + modifier displays a plus or minus sign before the value. Note
that the ".2" modifier is still in place, and is padding the value to exactly two decimal places.

Further Reading on String Formatting

» Python Library Reference (http://www.python.org/doc/current/lib/) summarizes all the string formatting
format characters (http://www.python.org/doc/current/lib/typesseq-strings.html).

« Effective AWK Programming (http://www-gnats.gnu.org:8080/cgi—bin/info2www?(gawk) Top) discusses all
the format characters (http://www-gnats.gnu.org:8080/cgi—bin/info2www?(gawk)Control+Letters) and
advanced string formatting techniques like specifying width, precision, and zero—padding
(http://www-gnats.gnu.org:8080/cgi—bin/info2www?(gawk)Format+Modifiers).

3.6. Mapping Lists

One of the most powerful features of Python is the list comprehension, which provides a compact way of mapping &
list into another list by applying a function to each of the elements of the list.

Example 3.24. Introducing List Comprehensions

Dive Into Python 26

http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/typesseq-strings.html
http://www-gnats.gnu.org:8080/cgi-bin/info2www?(gawk)Top
http://www-gnats.gnu.org:8080/cgi-bin/info2www?(gawk)Control+Letters
http://www-gnats.gnu.org:8080/cgi-bin/info2www?(gawk)Format+Modifiers

>>>1i=[1,9,8, 4]

>>> [elem*2 for elem in Ii] (1]
[2, 18, 16, 8]

>>> |i (2]
[1,9, 8, 4]

>>> |i = [elem*2 for elem in li] (3]
>>> |

[2, 18, 16, 8]

©® To make sense of this, look at it from right to left. li is the list you're mapping. Python loops through li one
element at a time, temporarily assigning the value of each element to the variable elem. Python then applies
the function elem*2 and appends that result to the returned list.

® Note that list comprehensions do not change the original list.

® |tis safe to assign the result of a list comprehension to the variable that you're mapping. Python constructs th
new list in memory, and when the list comprehension is complete, it assigns the result to the variable.
Here are the list comprehensions in the buildConnectionString function that you declared in Chapter 2:

["%s=%s" % (k, v) for k, v in params.items()]

First, notice that you're calling the items function of the params dictionary. This function returns a list of tuples of
all the data in the dictionary.

Example 3.25. The keys, values, and items Functions

>>> params = {"server":"mpilgrim", "database":"master", "uid":"sa", "pwd":"secret"}
>>> params.keys()

['server', 'uid', 'database’, 'pwd']

>>> params.values() (2]

['mpilgrim’, 'sa’, 'master’, 'secret]

>>> params.items()

[(‘'server', 'mpilgrim’), (‘'uid’, 'sa’), (‘database’, 'master’), (‘pwd’, 'secret")]

Q@ The keys method of a dictionary returns a list of all the keys. The list is not in the order in
which the dictionary was defined (remember that elements in a dictionary are unordered),
but it is a list.

® The values method returns a list of all the values. The list is in the same order as the list
returned by keys, so params.values()[n] == params[params.keys()[n]]
for all values of n.

® The items method returns a list of tuples of the form (key, value). The list contains

all the data in the dictionary.
Now let's see what buildConnectionString does. It takes a list, params.items(), and maps it to a new list
by applying string formatting to each element. The new list will have the same number of elements as
params.items(), but each element in the new list will be a string that contains both a key and its associated value
from the params dictionary.

Example 3.26. List Comprehensions in buildConnectionString, Step by Step

>>> params = {"server":"mpilgrim", "database":"master", "uid":"sa", "pwd":"secret"}
>>> params.items()

[(‘'server', 'mpilgrim"), (‘'uid’, 'sa’), (‘database’, 'master’), (‘pwd', 'secret’
>>> [k for k, v in params.items()]

—

|

® Qe

>>> [v for k, v in params.items()]

Dive Into Python 27

['mpilgrim’, 'sa’, 'master’, 'secret’]
>>> ["%s=%s" % (k, v) for k, v in params.items()] (3]
['server=mpilgrim’, 'uid=sa', 'database=master’, 'pwd=secret’]

@ Note that you're using two variables to iterate through the params.items() list. This is another use of
multi-variable assignment. The first element of params.items() is ('server', 'mpilgrim’), so in
the first iteration of the list comprehension, k will get 'server' and v will get 'mpilgrim’. In this case,
you're ignoring the value of v and only including the value of k in the returned list, so this list comprehension
ends up being equivalent to params.keys().

O Here you're doing the same thing, but ignoring the value of k, so this list comprehension ends up being
equivalent to params.values().

© Combining the previous two examples with some simple string formatting, you get a list of strings that include
both the key and value of each element of the dictionary. This looks suspiciously like the output of the prograr
All that remains is to join the elements in this list into a single string.

Further Reading on List Comprehensions

* Python Tutorial (http://www.python.org/doc/current/tut/tut.html) discusses another way to map lists using the
built—-in map function
(http://www.python.org/doc/current/tut/node7.htmI#SECTIONO007130000000000000000).

* Python Tutorial (http://www.python.org/doc/current/tut/tut.html) shows how to do nested list comprehensions
(http://www.python.org/doc/current/tut/node7.htmI#SECTIONO007140000000000000000).

3.7. Joining Lists and Splitting Strings

You have a list of key-value pairs in the form key=value, and you want to join them into a single string. To join
any list of strings into a single string, use the join method of a string object.

Here is an example of joining a list from the buildConnectionString function:
return ";".join(["%s=%s" % (k, v) for k, v in params.items()])

One interesting note before you continue. | keep repeating that functions are objects, strings are objects... everythir
an object. You might have thought | meant that string variables are objects. But no, look closely at this example anc
you'll see that the string ";" itself is an object, and you are calling its join method.

The join method joins the elements of the list into a single string, with each element separated by a semi-colon. Th
delimiter doesn't need to be a semi—colon; it doesn't even need to be a single character. It can be any string.

join works only on lists of stkings; it does not do any type coercion. Joining a list that has one or more non-string
elements will raise an exception.

Example 3.27. Output of odbchelper.py

>>> params = {"server":"mpilgrim", "database":"master", "uid":"sa", "pwd":"secret"}
>>> ["%s=%s" % (k, v) for k, v in params.items()]

['server=mpilgrim’, 'uid=sa’, 'database=master’, '‘pwd=secret']

>>> " " join(["%s=%s" % (k, v) for k, v in params.items()])
'server=mpilgrim;uid=sa;database=master;pwd=secret’

This string is then returned from the odbchelper function and printed by the calling block, which gives you the
output that you marveled at when you started reading this chapter.

Dive Into Python 28

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node7.html#SECTION007130000000000000000
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node7.html#SECTION007140000000000000000

You're probably wondering if there's an analogous method to split a string into a list. And of course there is, and it's
called split.

Example 3.28. Splitting a String

>>> |i = ['server=mpilgrim’, 'uid=sa’, 'database=master', 'pwd=secret']
>>> s = ";" join(li)
>>> S

'server=mpilgrim;uid=sa;database=master;pwd=secret’

>>> s.split(";")

['server=mpilgrim’, 'uid=sa', 'database=master’, 'pwd=secret’]
>>> s.split(";", 1)

['server=mpilgrim’, 'uid=sa;database=master;pwd=secret]

o split reverses join by splitting a string into a multi—element list. Note that the delimiter (*;") is
stripped out completely; it does not appear in any of the elements of the returned list.

® split takes an optional second argument, which is the number of times to split. (""Oooooh, optional
arguments..." You'll learn how to do this in your own functions in the next chapter.)

anystring.split(delimiter, 1) is/a useful technique when you want to search a string for a substring and
then work with everything before the substring (which ends up in the first element of the returned list) and
everything after it (which ends up in the second element).

Further Reading on String Methods

» Python Knowledge Base (http://www.faqts.com/knowledge-base/index.phtml/fid/199/) answers common
guestions about strings (http://www.fagts.com/knowledge—base/index.phtml/fid/480) and has a lot of exampl
code using strings (http://www.fagts.com/knowledge-base/index.phtml/fid/539).

» Python Library Reference (http://www.python.org/doc/current/lib/) summarizes all the string methods
(http://www.python.org/doc/current/lib/string—methods.html).

» Python Library Reference (http://www.python.org/doc/current/lib/) documents the string module
(http:/iwvww.python.org/doc/current/lib/module-string.html).

» The Whole Python FAQ (http://www.python.org/doc/FAQ.html) explains why join is a string method
(http://www.python.org/cgi—bin/fagw.py?query=4.96&querytype=simple&casefold=yes&reqg=search) instead
of a list method.

3.7.1. Historical Note on String Methods

When | first learned Python, | expected join to be a method of a list, which would take the delimiter as an argument.
Many people feel the same way, and there's a story behind the join method. Prior to Python 1.6, strings didn't have
all these useful methods. There was a separate string module that contained all the string functions; each function
took a string as its first argument. The functions were deemed important enough to put onto the strings themselves,
which made sense for functions like lower, upper, and split. But many hard—core Python programmers objected

to the new join method, arguing that it should be a method of the list instead, or that it shouldn't move at all but
simply stay a part of the old string module (which still has a lot of useful stuff in it). | use the new join method
exclusively, but you will see code written either way, and if it really bothers you, you can use the old string.join
function instead.

3.8. Summary

The odbchelper.py program and its output should now make perfect sense.

def buildConnectionString(params):
""" Build a connection string from a dictionary of parameters.

Dive Into Python 29

http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/index.phtml/fid/480
http://www.faqts.com/knowledge-base/index.phtml/fid/539
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/string-methods.html
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-string.html
http://www.python.org/doc/FAQ.html
http://www.python.org/cgi-bin/faqw.py?query=4.96&querytype=simple&casefold=yes&req=search

Returns string.""
return ";".join(["%s=%s" % (k, v) for k, v in params.items()])

if _name__ =="_ main__"
myParams = {"server":"mpilgrim”, \
"database":"master”, \
"uid":"sa", \
"pwd":"secret" \

print buildConnectionString(myParams)
Here is the output of odbchelper.py:
server=mpilgrim;uid=sa;database=master;pwd=secret
Before diving into the next chapter, make sure you're comfortable doing all of these things:

« Using the Python IDE to test expressions interactively

« Writing Python programs and running them from within your IDE, or from the command line

« Importing modules and calling their functions

 Declaring functions and using doc strings, local variables, and proper indentation

« Defining dictionaries, tuples, and lists

« Accessing attributes and methods of any object, including strings, lists, dictionaries, functions, and modules
« Concatenating values through string formatting

* Mapping lists into other lists using list comprehensions

« Splitting strings into lists and joining lists into strings

Dive Into Python 30

Chapter 4. The Power Of Introspection

This chapter covers one of Python's strengths: introspection. As you know, everything in Python is an object, and
introspection is code looking at other modules and functions in memory as objects, getting information about them,
and manipulating them. Along the way, you'll define functions with no name, call functions with arguments out of
order, and reference functions whose names you don't even know ahead of time.

4.1. Diving In

Here is a complete, working Python program. You should understand a good deal about it just by looking at it. The
numbered lines illustrate concepts covered in Chapter 2, Your First Python Program. Don't worry if the rest of the
code looks intimidating; you'll learn all about it throughout this chapter.

Example 4.1. apihelper.py

If you have not already done so, you can download this and other examples
(http://diveintopython.org/download/diveintopython—examples—5.4.zip) used in this book.

def info(object, spacing=10, collapse=1): 006
""" Print methods and doc strings.

Takes module, class, list, dictionary, or string.
methodList = [method for method in dir(object) if callable(getattr(object, method))]
processFunc = collapse and (lambda s: " ".join(s.split())) or (lambda s: s)
print "\n".join(["%s %s" %
(method.ljust(spacing),
processFunc(str(getattr(object, method).__doc__)))
for method in methodList])

if _name__=="_main__" 006
print info.__doc___

This module has one function, info. According to its function declaration, it takes three parameters: object,
spacing, and collapse. The last two are actually optional parameters, as you'll see shortly.

The info function has a multi-line doc string that succinctly describes the function's purpose. Note that
no return value is mentioned; this function will be used solely for its effects, rather than its value.

Code within the function is indented.

The if __name___ trick allows this program do something useful when run by itself, without interfering with
its use as a module for other programs. In this case, the program simply prints out the doc string of the
info function.

® if statements use == for comparison, and parentheses are not required.

The info function is designed to be used by you, the programmer, while working in the Python IDE. It takes any
object that has functions or methods (like a module, which has functions, or a list, which has methods) and prints ol
the functions and their doc strings.

o © ©

Example 4.2. Sample Usage of apihelper.py

>>> from apihelper import info

>>>i=]

>>> info(li)

append L.append(object) —— append object to end

Dive Into Python 31

http://diveintopython.org/download/diveintopython-examples-5.4.zip

count L.count(value) —> integer —— return number of occurrences of value
extend L.extend(list) —— extend list by appending list elements

index L.index(value) —> integer —— return index of first occurrence of value
insert L.insert(index, object) —— insert object before index

pop L.pop([index]) —> item —— remove and return item at index (default last)
remove L.remove(value) —— remove first occurrence of value

reverse L.reverse() —— reverse *IN PLACE*

sort L.sort([cmpfunc]) —— sort *IN PLACE?; if given, cmpfunc(x, y) => -1, 0, 1

By default the output is formatted to be easy to read. Multi-line doc strings are collapsed into a single long line,
but this option can be changed by specifying 0 forablapse argument. If the function names are longer than 10
characters, you can specify a larger value fosgiaing argument to make the output easier to read.

Example 4.3. Advanced Usage of apihelper.py

>>> import odbchelper

>>> info(odbchelper)

buildConnectionString Build a connection string from a dictionary Returns string.
>>> info(odbchelper, 30)

buildConnectionString Build a connection string from a dictionary Returns string.
>>> info(odbchelper, 30, 0)
buildConnectionString Build a connection string from a dictionary

Returns string.

4.2. Using Optional and Named Arguments

Python allows function arguments to have default values; if the function is called without the argument, the argumer
gets its default value. Futhermore, arguments can be specified in any order by using named arguments. Stored
procedures in SQL Server Transact/SQL can do this, so if you're a SQL Server scripting guru, you can skim this pa

Here is an example of info, a function with two optional arguments:
def info(object, spacing=10, collapse=1):

spacing and collapse are optional, because they have default values defined. object is required, because it has
no default value. If info is called with only one argument, spacing defaults to 10 and collapse defaults to 1. If
info is called with two arguments, collapse still defaults to 1.

Say you want to specify a value for collapse but want to accept the default value for spacing. In most
languages, you would be out of luck, because you would need to call the function with three arguments. But in
Python, arguments can be specified by name, in any order.

Example 4.4. Valid Calls of info

info(odbchelper)

info(odbchelper, 12)
info(odbchelper, collapse=0)
info(spacing=15, object=odbchelper)

co0e

Q with only one argument, spacing gets its default value of 10 and collapse gets its default value of
1.

@ With two arguments, collapse gets its default value of 1.

Dive Into Python 32

® Here you are naming the collapse argument explicitly and specifying its value. spacing still gets its
default value of 10.

@ Even required arguments (like object, which has no default value) can be named, and named

arguments can appear in any order.
This looks totally whacked until you realize that arguments are simply a dictionary. The "normal" method of calling
functions without argument names is actually just a shorthand where Python matches up the values with the argum
names in the order they're specified in the function declaration. And most of the time, you'll call functions the
"normal" way, but you always have the additional flexibility if you need it.

The only thing you need toado to call a function is specify a value (somehow) for each required argument; the
manner and order in which you do that is up to you.

Further Reading on Optional Arguments

» Python Tutorial (http://www.python.org/doc/current/tut/tut.html) discusses exactly when and how default
arguments are evaluated
(http://www.python.org/doc/current/tut/node6.htmi#SECTION006710000000000000000), which matters
when the default value is a list or an expression with side effects.

4.3. Using type, str, dir, and Other Built-In Functions

Python has a small set of extremely useful built—in functions. All other functions are partitioned off into modules.
This was actually a conscious design decision, to keep the core language from getting bloated like other scripting
languages (cough cough, Visual Basic).

4.3.1. The type Function

The type function returns the datatype of any arbitrary object. The possible types are listed in the types module.
This is useful for helper functions that can handle several types of data.

Example 4.5. Introducing type

>>> type(1) o
<type 'int’>

>>>i=]

>>> type(li) (2]
<type 'list’>

>>> import odbchelper

>>> type(odbchelper)

<type 'module'>

>>> import types (4
>>> type(odbchelper) == types.ModuleType
True

1 type takes anything —— and | mean anything —— and returns its datatype. Integers, strings, lists,
dictionaries, tuples, functions, classes, modules, even types are acceptable.

type can take a variable and return its datatype.
type also works on modules.

You can use the constants in the types module to compare types of objects. This is what the info
function does, as you'll see shortly.

o0

Dive Into Python 33

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node6.html#SECTION006710000000000000000

4.3.2. The str Function

The str coerces data into a string. Every datatype can be coerced into a string.

Example 4.6. Introducing str

>>> str(1) (1]
T

>>> horsemen = ['war’, 'pestilence’, ‘famine’]

>>> horsemen

['war', 'pestilence’, ‘famine’]

>>> horsemen.append(‘Powerbuilder’)

>>> str(horsemen)

"['war', 'pestilence’, 'famine’, 'Powerbuilder]"

>>> str(odbchelper)

"<module 'odbchelper' from 'c:\\dochook\\dip\\py\\odbchelper.py'>"
>>> str(None) (4]

‘None'

Q9 ror simple datatypes like integers, you would expect str to work, because almost every language has a
function to convert an integer to a string.

@ However, str works on any object of any type. Here it works on a list which you've constructed in bits and
pieces.

® st also works on modules. Note that the string representation of the module includes the pathname of the
module on disk, so yours will be different.

© A subtle but important behavior of str is that it works on None, the Python null value. It returns the string
'None'. You'll use this to your advantage in the info function, as you'll see shortly.

At the heart of the info function is the powerful dir function. dir returns a list of the attributes and methods of any
object: modules, functions, strings, lists, dictionaries... pretty much anything.

Example 4.7. Introducing dir

>>>i=]

>>> dir(li) (1

['append’, ‘count’, 'extend’, 'index’, 'insert’,

‘pop’, 'remove’, ‘reverse’, 'sort’]

>>>d={}

>>> dir(d) (2]

[clear', 'copy’, 'get', 'has_key', 'items', 'keys', 'setdefault’, 'update’, 'values']
>>> import odbchelper

>>> dir(odbchelper)

[__builtins__'," doc_'' file_',' name__', 'buildConnectionString']

Q Jiisalist, so dir(li) returns a list of all the methods of a list. Note that the returned list contains the names
of the methods as strings, not the methods themselves.

® disa dictionary, so dir(d) returns a list of the names of dictionary methods. At least one of these, keys,
should look familiar.

® Thisis where it really gets interesting. odbchelper is a module, so dir(odbchelper) returns a list of all
kinds of stuff defined in the module, including built-in attributes, like __name__, doc__, and whatever
other attributes and methods you define. In this case, odbchelper has only one user—defined method, the
buildConnectionString function described in Chapter 2.

Finally, the callable function takes any object and returns True if the object can be called, or False otherwise.

Dive Into Python 34

Callable objects include functions, class methods, even classes themselves. (More on classes in the next chapter.)

Example 4.8. Introducing callable

>>> import string

>>> string.punctuation
TH$%E&\'()*+,—.[;<=>?@[\]"_{|}~'
>>> string.join

<function join at 00C55A7C>
>>> callable(string.punctuation)
False

>>> callable(string.join)

True

>>> print string.join.__doc__
join(list [,sep]) —> string

@ 0 ® ®© @Q

Return a string composed of the words in list, with
intervening occurrences of sep. The default separator is a
single space.

(joinfields and join are synonymous)

©® The functions in the string module are deprecated (although many people still use the join
function), but the module contains a lot of useful constants like this string.punctuation,
which contains all the standard punctuation characters.

string.join is a function that joins a list of strings.

string.punctuation is not callable; it is a string. (A string does have callable methods, but
the string itself is not callable.)

string.join is callable; it's a function that takes two arguments.
Any callable object may have a doc string. By using the callable function on each of an
object's attributes, you can determine which attributes you care about (methods, functions, classes)

and which you want to ignore (constants and so on) without knowing anything about the object
ahead of time.

4.3.3. Built—=In Functions

@0 o0

type, str, dir, and all the rest of Python's built-in functions are grouped into a special module called
__builtin__. (That's two underscores before and after.) If it helps, you can think of Python automatically
executing from __ builtin__import * on startup, which imports all the "built-in" functions into the
namespace so you can use them directly.

The advantage of thinking like this is that you can access all the built-in functions and attributes as a group by getti
information about the __ builtin__ module. And guess what, Python has a function called info. Try it yourself

and skim through the list now. We'll dive into some of the more important functions later. (Some of the built—in error
classes, like AttributeError, should already look familiar.)

Example 4.9. Built-in Attributes and Functions

>>> from apihelper import info

>>> import __ builtin__

>>> info(__builtin__, 20)

ArithmeticError Base class for arithmetic errors.
AssertionError Assertion failed.

AttributeError Attribute not found.

Dive Into Python 35

EOFError Read beyond end of file.
EnvironmentError Base class for I/O related errors.

Exception Common base class for all exceptions.
FloatingPointError Floating point operation failed.
IOError 1/0 operation failed.

[...snip...]

Python comes with excellent reference manuals, which you should peruse thoroughly to learn all the modules Pyth
has to offer. But unlike most languages, where you would find yourself referring back to the manuals or man pages
to remind yourself how to use these modules, Python is largely self-documenting.

Further Reading on Built—In Functions

» Python Library Reference (http://www.python.org/doc/current/lib/) documents all the built—in functions
(http://www.python.org/doc/current/lib/built—in—funcs.html) and all the built-in exceptions
(http://www.python.org/doc/current/lib/module—exceptions.html).

4.4. Getting Object References With getattr

You already know that Python functions are objects. What you don't know is that you can get a reference to a funct
without knowing its name until run—time, by using the getattr function.

Example 4.10. Introducing getattr

>>> |i = ["Larry", "Curly"]

>>> li.pop 1
<built-in method pop of list object at 010DF884>
>>> getattr(li, "pop") (2]
<built-in method pop of list object at 010DF884>
>>> getattr(li, "append")("Moe")

>>> |i
[*Larry", "Curly", "Moe"]
>>> getattr({}, "clear") (4]

<built-in method clear of dictionary object at 00F113D4>
>>> getattr((), "pop") (5]
Traceback (innermost last):

File "<interactive input>", line 1, in ?
AttributeError: 'tuple' object has no attribute 'pop’

Q@ This gets a reference to the pop method of the list. Note that this is not calling the pop method; that would be
li.pop(). This is the method itself.

® This also returns a reference to the pop method, but this time, the method name is specified as a string
argument to the getattr function. getattr is an incredibly useful built—in function that returns any
attribute of any object. In this case, the object is a list, and the attribute is the pop method.

® |ncaseit hasn't sunk in just how incredibly useful this is, try this: the return value of getattr is the method,
which you can then call just as if you had said li.append("Moe") directly. But you didn't call the function
directly; you specified the function name as a string instead.

getattr also works on dictionaries.

In theory, getattr would work on tuples, except that tuples have no methods, so getattr will raise an
exception no matter what attribute name you give.

(o)

Dive Into Python 36

http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/built-in-funcs.html
http://www.python.org/doc/current/lib/module-exceptions.html

4.4.1. getattr with Modules

getattr isn't just for built—in datatypes. It also works on modules.

Example 4.11. The getattr Function in apihelper.py

>>> import odbchelper

>>> odbchelper.buildConnectionString
<function buildConnectionString at 00D18DD4>
>>> getattr(odbchelper, "buildConnectionString") (2]
<function buildConnectionString at 00D18DD4>
>>> object = odbchelper

>>> method = "buildConnectionString"

>>> getattr(object, method)

<function buildConnectionString at 00D18DD4>
>>> type(getattr(object, method)) (4
<type 'function'>

>>> import types

>>> type(getattr(object, method)) == types.FunctionType

True

>>> callable(getattr(object, method)) (5]
True

®

@ This returns a reference to the buildConnectionString function in the odbchelper module, which
you studied in Chapter 2, Your First Python Program. (The hex address you see is specific to my machine; yo
output will be different.)

2] Using getattr, you can get the same reference to the same function. In general, getattr(object,
"attribute") is equivalent to object.attribute. If object is a module, then attribute can be
anything defined in the module: a function, class, or global variable.

® And this is what you actually use in the info function. object is passed into the function as an argument;
method is a string which is the name of a method or function.

@ Inthis case, method is the name of a function, which you can prove by getting its type.
© Since method is a function, it is callable.
4.4.2. getattr As a Dispatcher

A common usage pattern of getattr is as a dispatcher. For example, if you had a program that could output data in
a variety of different formats, you could define separate functions for each output format and use a single dispatch
function to call the right one.

For example, let's imagine a program that prints site statistics in HTML, XML, and plain text formats. The choice of
output format could be specified on the command line, or stored in a configuration file. A statsout module defines
three functions, output_html, output_xml, and output_text. Then the main program defines a single

output function, like this:

Example 4.12. Creating a Dispatcher with getattr

import statsout

def output(data, format="text"):
output_function = getattr(statsout, "output_%s" % format)
return output_function(data)

ol

Dive Into Python 37

Q@ The output function takes one required argument, data, and one optional argument, format. If format is
not specified, it defaults to text, and you will end up calling the plain text output function.

® vou concatenate the format argument with "output_" to produce a function name, and then go get that
function from the statsout module. This allows you to easily extend the program later to support other
output formats, without changing this dispatch function. Just add another function to statsout named, for
instance, output_pdf, and pass "pdf" as the format into the output function.

® Now you can simply call the output function in the same way as any other function. The output_function
variable is a reference to the appropriate function from the statsout module.

Did you see the bug in the previous example? This is a very loose coupling of strings and functions, and there is no

error checking. What happens if the user passes in a format that doesn't have a corresponding function defined in

statsout? Well, getattr will return None, which will be assigned to output_function instead of a valid

function, and the next line that attempts to call that function will crash and raise an exception. That's bad.

Luckily, getattr takes an optional third argument, a default value.

Example 4.13. getattr Default Values

import statsout

def output(data, format="text"):
output_function = getattr(statsout, "output_%s" % format, statsout.output_text)
return output_function(data)

@ This function call is guaranteed to work, because you added a third argument to the call to getattr.
The third argument is a default value that is returned if the attribute or method specified by the second
argument wasn't found.

As you can see, getattr is quite powerful. It is the heart of introspection, and you'll see even more powerful

examples of it in later chapters.

4.5. Filtering Lists

As you know, Python has powerful capabilities for mapping lists into other lists, via list comprehensions (Section 3.¢
Mapping Lists). This can be combined with a filtering mechanism, where some elements in the list are mapped
while others are skipped entirely.

Here is the list filtering syntax:
[mapping—expression for element in source-list if filter—expression]

This is an extension of the list comprehensions that you know and love. The first two thirds are the same; the last p
starting with the if, is the filter expression. A filter expression can be any expression that evaluates true or false
(which in Python can be almost anything). Any element for which the filter expression evaluates true will be include
in the mapping. All other elements are ignored, so they are never put through the mapping expression and are not
included in the output list.

Example 4.14. Introducing List Filtering

>>> i = ["a", "mpilgrim", “foo", "b", "c", "b", "d", "d"]

>>> [elem for elem in li if len(elem) > 1] (1]
['mpilgrim’, 'foo']
>>> [elem for elem in li if elem !="b"] (2]

Dive Into Python 38

['a', 'mpilgrim’, ‘foo’, 'c', 'd’, 'd]
>>> [elem for elem in li if li.count(elem) == 1] (3]
['a', ‘'mpilgrim’, 'foo’, 'c']

Q9 The mapping expression here is simple (it just returns the value of each element), so concentrate on the filter
expression. As Python loops through the list, it runs each element through the filter expression. If the filter
expression is true, the element is mapped and the result of the mapping expression is included in the returnec
list. Here, you are filtering out all the one—character strings, so you're left with a list of all the longer strings.

(2] Here, you are filtering out a specific value, b. Note that this filters all occurrences of b, since each time it
comes up, the filter expression will be false.

® countis a list method that returns the number of times a value occurs in a list. You might think that this filter
would eliminate duplicates from a list, returning a list containing only one copy of each value in the original
list. But it doesn't, because values that appear twice in the original list (in this case, b and d) are excluded
completely. There are ways of eliminating duplicates from a list, but filtering is not the solution.

Let's get back to this line from apihelper.py:

methodList = [method for method in dir(object) if callable(getattr(object, method))]

This looks complicated, and it is complicated, but the basic structure is the same. The whole filter expression return
list, which is assigned to the methodList variable. The first half of the expression is the list mapping part. The
mapping expression is an identity expression, which it returns the value of each element. dir(object) returns a list
of object's attributes and methods —- that's the list you're mapping. So the only new patrt is the filter expression
after the if.

The filter expression looks scary, but it's not. You already know about callable, getattr, and in. As you saw in
the previous section, the expression getattr(object, method) returns a function object if object is a
module and method is the name of a function in that module.

So this expression takes an object (hamed object). Then it gets a list of the names of the object's attributes,
methods, functions, and a few other things. Then it filters that list to weed out all the stuff that you don't care about.
You do the weeding out by taking the name of each attribute/method/function and getting a reference to the real thi
via the getattr function. Then you check to see if that object is callable, which will be any methods and functions,
both built-in (like the pop method of a list) and user—defined (like the buildConnectionString function of the
odbchelper module). You don't care about other attributes, like the __name___ attribute that's built in to every
module.

Further Reading on Filtering Lists
e Python Tutorial (http://www.python.org/doc/current/tut/tut.html) discusses another way to filter lists using the

built=in filter function
(http://mww.python.org/doc/current/tut/node7.htmI#SECTIONO007130000000000000000).

4.6. The Peculiar Nature of and and or

In Python, and and or perform boolean logic as you would expect, but they do not return boolean values; instead,
they return one of the actual values they are comparing.

Example 4.15. Introducing and

>>>'a'and 'b' (1]

Dive Into Python 39

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node7.html#SECTION007130000000000000000

b
>>>"and 'b' (2]

>>>'a'and 'b' and 'c’ (3]
o

©® \Wwhen using and, values are evaluated in a boolean context from left to right. 0, ", [], (), {}, and
None are false in a boolean context; everything else is true. Well, almost everything. By default,
instances of classes are true in a boolean context, but you can define special methods in your class to
make an instance evaluate to false. You'll learn all about classes and special methods in Chapter 5. If all
values are true in a boolean context, and returns the last value. In this case, and evaluates 'a’, which is
true, then 'b’, which is true, and returns 'b'.

O any value is false in a boolean context, and returns the first false value. In this case, " is the first
false value.

® Al values are true, so and returns the last value, 'c'.

Example 4.16. Introducing or

>>>'a' or 'b' (1]
o
>>>"or'b’ (2]
b
>>>"or[] or {} (3]

{

>>> def sidefx():

print "in sidefx()"

return 1
>>>'a' or sidefx() (4
'y

When using or, values are evaluated in a boolean context from left to right, just like and. If any value is true,
or returns that value immediately. In this case, 'a’ is the first true value.

or evaluates ", which is false, then 'b', which is true, and returns 'b'.

(1]

(2]

® fall values are false, or returns the last value. or evaluates ", which is false, then [], which is false, then
{}, which is false, and returns {}.

4]

Note that or evaluates values only until it finds one that is true in a boolean context, and then it ignores the
rest. This distinction is important if some values can have side effects. Here, the function sidefx is never
called, because or evaluates 'a’, which is true, and returns 'a’ immediately.

If you're a C hacker, you are certainly familiar with the bool ? a : b expression, which evaluates to a ifool is

true, and b otherwise. Because of the way and and or work in Python, you can accomplish the same thing.

4.6.1. Using the and-or Trick

Example 4.17. Introducing the and—or Trick

>>> g = "first"
>>> b = "second"

>>>J]andaorb (1]
first'

>>>0andaorb (2]
'second'

(1]

Dive Into Python 40

This syntax looks similar to the bool ? a : b expression in C. The entire expression is evaluated

from left to right, so the and is evaluated first. 1 and 'first' evalutes to 'first', then

first' or 'second' evalutes to "first'.
@ 0 and first' evalutes to False, and then 0 or 'second' evaluates to 'second'.
However, since this Python expression is simply boolean logic, and not a special construct of the language, there is
one extremely important difference between this and-or trick in Python and the bool ? a : b syntax in C. If the
value of a is false, the expression will not work as you would expect it to. (Can you tell | was bitten by this? More
than once?)

Example 4.18. When the and-or Trick Fails

>>>g=""

>>> b = "second"

>>>J]andaorb (1]
'second'

©® Sinceaisan empty string, which Python considers false in a boolean context, 1 and " evalutes to ", and
then " or 'second' evalutes to 'second’. Oops! That's not what you wanted.

The and-or trick, bool and a or b, will not work like the C expression bool ? a: b when a is false in a

boolean context.

The real trick behind the and-or trick, then, is to make sure that the value of a is never false. One common way of

doing this is to turn a into [a] and b into [b], then taking the first element of the returned list, which will be either a
or b.

Example 4.19. Using the and-or Trick Safely

>>>g ="
>>> b = "second"
>>> (1 and [a] or [b])[0] o

Q Since [a] is a non—empty list, it is never false. Even if a is O or " or some other false value, the list [a] is

true because it has one element.
By now, this trick may seem like more trouble than it's worth. You could, after all, accomplish the same thing with at
if statement, so why go through all this fuss? Well, in many cases, you are choosing between two constant values, :
you can use the simpler syntax and not worry, because you know that the a value will always be true. And even if y
need to use the more complicated safe form, there are good reasons to do so. For example, there are some cases
Python where if statements are not allowed, such as in lambda functions.

Further Reading on the and-or Trick

» Python Cookbook (http://www.activestate.com/ASPN/Python/Cookbook/) discusses alternatives to the
and-or trick (http://www.activestate.com/ASPN/Python/Cookbook/Recipe/52310).

4.7. Using lambda Functions

Python supports an interesting syntax that lets you define one-line mini—functions on the fly. Borrowed from Lisp,
these so—called lambda functions can be used anywhere a function is required.

Dive Into Python 41

http://www.activestate.com/ASPN/Python/Cookbook/
http://www.activestate.com/ASPN/Python/Cookbook/Recipe/52310

Example 4.20. Introducing lambda Functions

>>> def f(x):
return x*2

>>> f(3)

6

>>> g = lambda x: x*2 (1]
>>> g(3)

6

>>> (lambda x: x*2)(3) (2]
6

@ This is a lambda function that accomplishes the same thing as the normal function above it. Note the
abbreviated syntax here: there are no parentheses around the argument list, and the return keyword is
missing (it is implied, since the entire function can only be one expression). Also, the function has no name, b
it can be called through the variable it is assigned to.

® You can use a lambda function without even assigning it to a variable. This may not be the most useful thing
in the world, but it just goes to show that a lambda is just an in—line function.

To generalize, a lambda function is a function that takes any number of arguments (including optional arguments)

and returns the value of a single expression. lambda functions can not contain commands, and they can not contail

more than one expression. Don't try to squeeze too much into a lambda function; if you need something more
complex, define a hormal function instead and make it as long as you want.

lambda functions are a matter of style. Using them is never required; anywhere you could use them, you could
define a separate normal function and use that instead. | use them in places where | want to encapsulate specific,
non-reusable code without littering my code with a lot of little one-line functions.

4.7.1. Real-World lambda Functions
Here are the lambda functions in apihelper.py:

processFunc = collapse and (lambda s: " ".join(s.split())) or (lambda s: s)
Notice that this uses the simple form of the and—or trick, which is okay, because a lambda function is always true
in a boolean context. (That doesn't mean that a lambda function can't return a false value. The function is always
true; its return value could be anything.)
Also notice that you're using the split function with no arguments. You've already seen it used with one or two

arguments, but without any arguments it splits on whitespace.

Example 4.21. split With No Arguments

>>> s = "this is\na\ttest" (1]
>>> print s

this is

a test

>>> print s.split() (2]
[this', 'is', 'a', 'test]

>>> print " " join(s.split() (3]
'this is a test'

(1]

Dive Into Python 42

This is a multiline string, defined by escape characters instead of triple quotes. \n is a carriage return, and \t is
a tab character.

(2 split without any arguments splits on whitespace. So three spaces, a carriage return, and a tab character are
all the same.

® You can normalize whitespace by splitting a string with split and then rejoining it with join, using a single
space as a delimiter. This is what the info function does to collapse multi-line doc strings into a single
line.

So what is the info function actually doing with these lambda functions, splits, and and-or tricks?

processFunc = collapse and (lambda s: " ".join(s.split())) or (lambda s: s)

processFunc is now a function, but which function it is depends on the value of the collapse variable. If
collapse is true, processFunc(string) will collapse whitespace; otherwise, processFunc(string)
will return its argument unchanged.

To do this in a less robust language, like Visual Basic, you would probably create a function that took a string and a
collapse argument and used an if statement to decide whether to collapse the whitespace or not, then returned the
appropriate value. This would be inefficient, because the function would need to handle every possible case. Every
time you called it, it would need to decide whether to collapse whitespace before it could give you what you wanted
In Python, you can take that decision logic out of the function and define a lambda function that is custom-tailored
to give you exactly (and only) what you want. This is more efficient, more elegant, and less prone to those nasty
oh-I-thought-those—arguments—were-reversed kinds of errors.

Further Reading on lambda Functions

» Python Knowledge Base (http://www.faqts.com/knowledge—base/index.phtml/fid/199/) discusses using
lambda to call functions indirectly (http://www.fagts.com/knowledge—base/view.phtml/aid/6081/fid/241).

» Python Tutorial (http://www.python.org/doc/current/tut/tut.ntml) shows how to access outside variables from
inside a lambda function
(http://www.python.org/doc/current/tut/node6.htmi#SECTION006740000000000000000). (PEP 227
(http://python.sourceforge.net/peps/pep—0227.html) explains how this will change in future versions of
Python.)

* The Whole Python FAQ (http://www.python.org/doc/FAQ.html) has examples of obfuscated one-liners using
lambda
(http://www.python.org/cgi—bin/fagw.py?query=4.15&querytype=simple&casefold=yes&req=search).

4.8. Putting It All Together

The last line of code, the only one you haven't deconstructed yet, is the one that does all the work. But by now the
work is easy, because everything you need is already set up just the way you need it. All the dominoes are in place
time to knock them down.

This is the meat of apihelper.py:

print "\n".join(["%s %s" %
(method.ljust(spacing),
processFunc(str(getattr(object, method).__doc_)))
for method in methodList])

Note that this is one command, split over multiple lines, but it doesn't use the line continuation character (\).
Remember when | said that some expressions can be split into multiple lines without using a backslash? A list

Dive Into Python 43

http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/view.phtml/aid/6081/fid/241
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node6.html#SECTION006740000000000000000
http://python.sourceforge.net/peps/pep-0227.html
http://www.python.org/doc/FAQ.html
http://www.python.org/cgi-bin/faqw.py?query=4.15&querytype=simple&casefold=yes&req=search

comprehension is one of those expressions, since the entire expression is contained in square brackets.

Now, let's take it from the end and work backwards. The
for method in methodList

shows that this is a list comprehension. As you know, methodList is a list of all the methods you care about in
object. So you're looping through that list with method.

Example 4.22. Getting a doc string Dynamically

>>> import odbchelper

>>> object = odbchelper

>>> method = 'buildConnectionString'

>>> getattr(object, method)

<function buildConnectionString at 010D6D74>
>>> print getattr(object, method).__doc__
Build a connection string from a dictionary of parameters.

o ooe

Returns string.

In the info function, object is the object you're getting help on, passed in as an argument.

As you're looping through methodList, method is the name of the current method.

Using the getattr function, you're getting a reference to thenethod function in the object module.
Now, printing the actual doc string of the method is easy.

The next piece of the puzzle is the use of str around the doc string. As you may recall, str is a built—in
function that coerces data into a string. But a doc string is always a string, so why bother with the str function?
The answer is that not every function has a doc string, and if it doesn't, its __doc___ attribute is None.

o0 Q

Example 4.23. Why Use str on a doc string?

>>> >>> def foo(): print 2

>>> >>> foo()

2

>>>>>>foo. _doc 1)
>>> foo.__doc__ == None (2]
True

>>> str(foo.__doc_) (3]
‘None'

Q® voucan easily define a function that has no doc string, so its __doc___ attribute is None.
Confusingly, if you evaluate the __doc___ attribute directly, the Python IDE prints nothing at alll,
which makes sense if you think about it, but is still unhelpful.

® voucan verify that the value of the __doc___ attribute is actually None by comparing it directly.
® The str function takes the null value and returns a string representation of it, ‘"None'.

In SQL, you must use IS NBULL instead of = NULL to compare a null value. In Python, you can use either ==

None or is None, but is None is faster.

Now that you are guaranteed to have a string, you can pass the string to processFunc, which you have already
defined as a function that either does or doesn't collapse whitespace. Now you see why it was important to use str t
convert a None value into a string representation. processFunc is assuming a string argument and calling its

split method, which would crash if you passed it None because None doesn't have a split method.

Dive Into Python 44

Stepping back even further, you see that you're using string formatting again to concatenate the return value of
processFunc with the return value of method's ljust method. This is a new string method that you haven't seen
before.

Example 4.24. Introducing ljust

>>> s = 'buildConnectionString'
>>> s |just(30)
‘buildConnectionString

>>> s |just(20) (2]
'buildConnectionString'

1 ljust pads the string with spaces to the given length. This is what the info function uses to make two
columns of output and line up all the doc strings in the second column.

D fthe given length is smaller than the length of the string, ljust will simply return the string unchanged. It
never truncates the string.

You're almost finished. Given the padded method name from the ljust method and the (possibly collapsed) doc

string from the call to processFunc, you concatenate the two and get a single string. Since you're mapping

methodList, you end up with a list of strings. Using the join method of the string "\n", you join this list into a

single string, with each element of the list on a separate line, and print the result.

Example 4.25. Printing a List

>>>li=[a, b, 'c]
>>> print "\n".join(li) (1]
a
b
C

@ Thisis also a useful debugging trick when you're working with lists. And in Python, you're always
working with lists.
That's the last piece of the puzzle. You should now understand this code.

print "\n".join(["%s %s" %
(method.ljust(spacing),
processFunc(str(getattr(object, method).__doc_)))
for method in methodList])

4.9. Summary

The apihelper.py program and its output should now make perfect sense.

def info(object, spacing=10, collapse=1):
""" Print methods and doc strings.
Takes module, class, list, dictionary, or string.""
methodList = [method for method in dir(object) if callable(getattr(object, method))]
processFunc = collapse and (lambda s: " ".join(s.split())) or (lambda s: s)
print "\n".join(["%s %s" %
(method.ljust(spacing),
processFunc(str(getattr(object, method).__doc__)))
for method in methodList])

if _name__ =="_main__"

Dive Into Python 45

print info.__doc___
Here is the output of apihelper.py:

>>> from apihelper import info

>>>i=]

>>> info(li)

append L.append(object) —— append object to end

count L.count(value) —> integer —— return number of occurrences of value
extend L.extend(list) —— extend list by appending list elements

index L.index(value) —> integer —— return index of first occurrence of value
insert L.insert(index, object) —— insert object before index

pop L.pop([index]) —> item —— remove and return item at index (default last)
remove L.remove(value) —— remove first occurrence of value

reverse L.reverse() —— reverse *IN PLACE*

sort L.sort([cmpfunc]) —— sort *IN PLACE?*; if given, cmpfunc(x,y) —=>-1,0, 1

Before diving into the next chapter, make sure you're comfortable doing all of these things:

« Defining and calling functions with optional and named arguments

« Using str to coerce any arbitrary value into a string representation

 Using getattr to get references to functions and other attributes dynamically

» Extending the list comprehension syntax to do list filtering

» Recognizing the and-or trick and using it safely

« Defining lambda functions

« Assigning functions to variables and calling the function by referencing the variable. | can't emphasize this
enough, because this mode of thought is vital to advancing your understanding of Python. You'll see more
complex applications of this concept throughout this book.

Dive Into Python 46

Chapter 5. Objects and Object-Orientation

This chapter, and pretty much every chapter after this, deals with object-oriented Python programming.

5.1. Diving In

Here is a complete, working Python program. Read the doc strings of the module, the classes, and the functions
to get an overview of what this program does and how it works. As usual, don't worry about the stuff you don't
understand; that's what the rest of the chapter is for.

Example 5.1. fileinfo.py

If you have not already done so, you can download this and other examples
(http://diveintopython.org/download/diveintopython—examples—5.4.zip) used in this book.

"""Framework for getting filetype—specific metadata.

Instantiate appropriate class with filename. Returned object acts like a
dictionary, with key—value pairs for each piece of metadata.

import fileinfo

info = fileinfo.MP3FileInfo("/music/ap/mahadeva.mp3")

print "\n".join(["%s=%s" % (k, v) for Kk, v in info.items()])

Or use listDirectory function to get info on all files in a directory.
for info in fileinfo.listDirectory("/music/ap/", [".mp3"]):

Framework can be extended by adding classes for particular file types, e.g.
HTMLFilelnfo, MPGFilelnfo, DOCFilelnfo. Each class is completely responsible for
parsing its files appropriately; see MP3Filelnfo for example.

import 0s
import sys
from UserDict import UserDict

def stripnulls(data):
"strip whitespace and nulls"
return data.replace("\00", ").strip()

class FileInfo(UserDict):
"store file metadata"
def __init__(self, flename=None):
UserDict.__init__(self)
self["name"] = filename

class MP3Filelnfo(Filelnfo):

"store ID3v1.0 MP3 tags"

tagDataMap = {"title" : (3, 33, stripnulls),
"artist" : (33, 63, stripnulls),
"album" : (63, 93, stripnulls),
"year" (93, 97, stripnulls),
"comment" : (97, 126, stripnulls),
"genre" : (127, 128, ord)}

def __ parse(self, filename):
"parse ID3v1.0 tags from MP3 file"
self.clear()
try:

Dive Into Python 47

http://diveintopython.org/download/diveintopython-examples-5.4.zip

fsock = open(filename, "rb", 0)
try:
fsock.seek(-128, 2)
tagdata = fsock.read(128)
finally:
fsock.close()
if tagdata[:3] == "TAG":
for tag, (start, end, parseFunc) in self.tagDataMap.items():
self[tag] = parseFunc(tagdata[start:end])
except IOError:
pass

def __setitem__ (self, key, item):
if key == "name" and item:
self.__parse(item)
FileInfo.__setitem__ (self, key, item)

def listDirectory(directory, fileExtList):
"get list of file info objects for files of particular extensions"
fileList = [os.path.normcase(f)
for f in os.listdir(directory)]
fileList = [0s.path.join(directory, f)
for fin fileList
if os.path.splitext(f)[1] in fileExtList]
def getFileInfoClass(filename, module=sys.modules[FileInfo.__module__]):
"get file info class from filename extension"
subclass = "%sFilelnfo" % os.path.splitext(filename)[1].upper()[1:]
return hasattr(module, subclass) and getattr(module, subclass) or Filelnfo
return [getFileInfoClass(f)(f) for f in fileList]

if _name__=="__main__":
for info in listDirectory("/music/_singles/", [*.mp3"]): (1]
print "\n".join(["%s=%s" % (k, V) for k, v in info.items()])
print

Q@ This program's output depends on the files on your hard drive. To get meaningful output, you'll need to chang
the directory path to point to a directory of MP3 files on your own machine.

This is the output | got on my machine. Your output will be different, unless, by some startling coincidence, you sha
my exact taste in music.

album=

artist=Ghost in the Machine

titte=A Time Long Forgotten (Concept

genre=31
name=/music/_singles/a_time_long_forgotten_con.mp3
year=1999

comment=http://mp3.com/ghostmachine

album=Rave Mix

artist=***DJ MARY-JANE***
titte=HELLRAISER****Trance from Hell
genre=31
name=/music/_singles/hellraiser.mp3
year=2000
comment=http://mp3.com/DIMARYJANE

album=Rave Mix

artist="**DJ MARY-JANE***
title=KAIRO****THE BEST GOA
genre=31
name=/music/_singles/kairo.mp3
year=2000

Dive Into Python 48

comment=http://mp3.com/DIMARYJANE

album=Journeys

artist=Masters of Balance

titte=Long Way Home

genre=31
name=/music/_singles/long_way_homel.mp3
year=2000
comment=http://mp3.com/MastersofBalan

album=

artist=The Cynic Project
titte=Sidewinder

genre=18
name=/music/_singles/sidewinder.mp3
year=2000
comment=http://mp3.com/cynicproject

album=Digitosis@128k
artist=VXpanded

titte=Spinning

genre=255
name=/music/_singles/spinning.mp3
year=2000
comment=http://mp3.com/artists/95/vxp

5.2. Importing Modules Using from module import

Python has two ways of importing modules. Both are useful, and you should know when to use each. One way,
import module, you've already seen in Section 2.4, Everything Is an Object . The other way accomplishes the
same thing, but it has subtle and important differences.

Here is the basic from module import syntax:

from UserDict import UserDict

This is similar to the import module syntax that you know and love, but with an important difference: the
attributes and methods of the imported module types are imported directly into the local namespace, so they are
available directly, without qualification by module name. You can import individual items or use from module
import * to import everything.

from module import * in Pyi:_h‘on is like use module in Perl; import module in Python is like
require module in Perl.

from module import * in Py@ﬁ_‘on is like import module.* in Java; import module in Python is like
import module in Java.

Example 5.2. import module vs. from module import

>>> import types

>>> types.FunctionType (1]
<type ‘function’>
>>> FunctionType (2]

Traceback (innermost last):

File "<interactive input>", line 1, in ?
NameError: There is no variable named 'FunctionType'
>>> from types import FunctionType

Dive Into Python 49

>>> FunctionType 4]
<type ‘function'>

Q9 The types module contains no methods; it just has attributes for each Python object type. Note that
the attribute, FunctionType, must be qualified by the module name, types.

(2 FunctionType by itself has not been defined in this namespace; it exists only in the context of
types.

® This syntax imports the attribute FunctionType from the types module directly into the local
namespace.

QO Now FunctionType can be accessed directly, without reference to types.

When should you use from module import?

* If you will be accessing attributes and methods often and don't want to type the module name over and over
use from module import.

* If you want to selectively import some attributes and methods but not others, use from module import.

« If the module contains attributes or functions with the same name as ones in your module, you must use
import module to avoid name conflicts.

Other than that, it's just a matter of style, and you will see Python code written both ways.

Use from module import *sharingly, because it makes it difficult to determine where a particular function or
attribute came from, and that makes debugging and refactoring more difficult.

Further Reading on Module Importing Techniques

« eff-bot (http://www.effbot.org/guides/) has more to say on import module vdfrom module import
(http://www.effbot.org/guides/import—confusion.htm).

» Python Tutorial (http://Awww.python.org/doc/current/tut/tut.html) discusses advanced import techniques,
including from module import *
(http://www.python.org/doc/current/tut/node8.htmI#SECTION008410000000000000000).

5.3. Defining Classes

Python is fully object—-oriented: you can define your own classes, inherit from your own or built-in classes, and
instantiate the classes you've defined.

Defining a class in Python is simple. As with functions, there is no separate interface definition. Just define the clas:
and start coding. A Python class starts with the reserved word class, followed by the class hame. Technically, that's
all that's required, since a class doesn't need to inherit from any other class.

Example 5.3. The Simplest Python Class

class Loaf: (1]
pass (2N 3]

@ The name of this class is Loaf, and it doesn't inherit from any other class. Class hames are usually capitalizec
EachWordLikeThis, but this is only a convention, not a requirement.

® This class doesn't define any methods or attributes, but syntactically, there needs to be something in the
definition, so you use pass. This is a Python reserved word that just means "move along, nothing to see here'
It's a statement that does nothing, and it's a good placeholder when you're stubbing out functions or classes.

Dive Into Python 50

http://www.effbot.org/guides/
http://www.effbot.org/guides/import-confusion.htm
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node8.html#SECTION008410000000000000000

® vou probably guessed this, but everything in a class is indented, just like the code within a function, if
statement, for loop, and so forth. The first thing not indented is not in the class.

The pass statement in Python is like an empty set of braces ({}) in Java or C.

Of course, realistically, most classes will be inherited from other classes, and they will define their own class metho
and attributes. But as you've just seen, there is nothing that a class absolutely must have, other than a name. In
particular, C++ programmers may find it odd that Python classes don't have explicit constructors and destructors.
Python classes do have something similar to a constructor: the __init__ method.

Example 5.4. Defining the FileInfo Class

from UserDict import UserDict

class FileInfo(UserDict): (1]

9 Python, the ancestor of a class is simply listed in parentheses immediately after the class name. So the
Filelnfo class is inherited from the UserDict class (which was imported from the UserDict
module). UserDict is a class that acts like a dictionary, allowing you to essentially subclass the
dictionary datatype and add your own behavior. (There are similar classes UserList and
UserString which allow you to subclass lists and strings.) There is a bit of black magic behind this,
which you will demystify later in this chapter when you explore the UserDict class in more depth.

In Python, the ancestor of‘@class is simply listed in parentheses immediately after the class name. There is no spe
keyword like extends in Java.

Python supports multiple inheritance. In the parentheses following the class name, you can list as many ancestor
classes as you like, separated by commas.

5.3.1. Initializing and Coding Classes

This example shows the initialization of the FileInfo class using the __init _ method.

Example 5.5. Initializing the Filelnfo Class

class FileInfo(UserDict):
"store file metadata" o
def __init__(self, filename=None): 2060

©® Classes can (and should) have doc strings too, just like modules and functions.
(2]

__init__is called immediately after an instance of the class is created. It would be tempting but
incorrect to call this the constructor of the class. It's tempting, because it looks like a constructor (by
convention, __init__is the first method defined for the class), acts like one (it's the first piece of

code executed in a newly created instance of the class), and even sounds like one ("init" certainly
suggests a constructor—ish nature). Incorrect, because the object has already been constructed by the
time __init__is called, and you already have a valid reference to the new instance of the class. But
__init__is the closest thing you're going to get to a constructor in Python, and it fills much the same
role.

® The first argument of every class method, including __init__, is always a reference to the current
instance of the class. By convention, this argument is always nhamed self. In the __init_ method,
self refers to the newly created object; in other class methods, it refers to the instance whose method
was called. Although you need to specify self explicitly when defining the method, you do not
specify it when calling the method; Python will add it for you automatically.

Dive Into Python 51

@ _ init_ methods can take any number of arguments, and just like functions, the arguments can be
defined with default values, making them optional to the caller. In this case, filename has a default
value of None, which is the Python null value.

By convention, the first argément of any Python class method (the reference to the current instance) is called self.
This argument fills the role of the reserved word this in C++ or Java, but self is not a reserved word in Python,
merely a naming convention. Nonetheless, please don't call it anything but self; this is a very strong convention.

Example 5.6. Coding the Filelnfo Class

class FileInfo(UserDict):
"store file metadata”
def __init__(self, flename=None):

UserDict.__init__ (self) (1]
self["'name"] = filename g

Q® Ssome pseudo-object-oriented languages like Powerbuilder have a concept of "extending" constructors and
other events, where the ancestor's method is called automatically before the descendant's method is execute
Python does not do this; you must always explicitly call the appropriate method in the ancestor class.

® | told you that this class acts like a dictionary, and here is the first sign of it. You're assigning the argument
filename as the value of this object's name key.

® Note that the __init___method never returns a value.
5.3.2. Knowing When to Use self and __init__

When defining your class methods, you must explicitly list self as the first argument for each method, including
__init__. When you call a method of an ancestor class from within your class, you must include the self

argument. But when you call your class method from outside, you do not specify anything for the self argument;
you skip it entirely, and Python automatically adds the instance reference for you. | am aware that this is confusing
first; it's not really inconsistent, but it may appear inconsistent because it relies on a distinction (between bound anc
unbound methods) that you don't know about yet.

Whew. | realize that's a lot to absorb, but you'll get the hang of it. All Python classes work the same way, so once Y«
learn one, you've learned them all. If you forget everything else, remember this one thing, because | promise it will
trip you up:

__init__ methods are optional, but when you define one, you must remember to explicitly call the ancestor's
__init__method (if it defines one). This is more generally true: whenever a descendant wants to extend the
behavior of the ancestor, the descendant method must explicitly call the ancestor method at the proper time, with tt
proper arguments.

Further Reading on Python Classes

* Learning to Program (http://www.freenetpages.co.uk/hp/alan.gauld/) has a gentler introduction to classes
(http://wvww.freenetpages.co.uk/hp/alan.gauld/tutclass.htm).

* How to Think Like a Computer Scientist (http://www.ibiblio.org/obp/thinkCSpy/) shows how to use classes tc
model compound datatypes (http://www.ibiblio.org/obp/thinkCSpy/chap12.htm).

* Python Tutorial (http://www.python.org/doc/current/tut/tut.html) has an in—depth look at classes, namespace
and inheritance (http://www.python.org/doc/current/tut/nodel11.html).

» Python Knowledge Base (http://www.faqts.com/knowledge—-base/index.phtml/fid/199/) answers common
guestions about classes (http://www.fagts.com/knowledge—base/index.phtml/fid/242).

Dive Into Python 52

http://www.freenetpages.co.uk/hp/alan.gauld/
http://www.freenetpages.co.uk/hp/alan.gauld/tutclass.htm
http://www.ibiblio.org/obp/thinkCSpy/
http://www.ibiblio.org/obp/thinkCSpy/chap12.htm
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node11.html
http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/index.phtml/fid/242

5.4. Instantiating Classes

Instantiating classes in Python is straightforward. To instantiate a class, simply call the class as if it were a function,
passing the arguments that the __init__ method defines. The return value will be the newly created object.

Example 5.7. Creating a FileInfo Instance

>>> import fileinfo

>>> f = fileinfo.FileInfo("/music/_singles/kairo.mp3") (1]
>>>f._ class__ (2]
<class fileinfo.Filelnfo at 010EC204>

>>>f,_ doc__ ©
'store file metadata’

>>> f 0

{'name": '/music/_singles/kairo.mp3'}

Q@ vouare creating an instance of the Filelnfo class (defined in the fileinfo module) and assigning the
newly created instance to the variable f. You are passing one parameter, /music/_singles/kairo.mp3,
which will end up as the filename argument in FileInfo's __init__ method.

(2 Every class instance has a built—in attribute, __class__, which is the object's class. (Note that the
representation of this includes the physical address of the instance on my machine; your representation will b
different.) Java programmers may be familiar with the Class class, which contains methods like getName
and getSuperclass to get metadata information about an object. In Python, this kind of metadata is
available directly on the object itself through attributes like __class__, __name__, and __bases__.

® You can access the instance's doc string just as with a function or a module. All instances of a class share
the same doc string.

® Remember when the __init__ method assigned its filename argument to self["'name"]? Well, here's
the result. The arguments you pass when you create the class instance get sent right along to the __init__
method (along with the object reference, self, which Python adds for free).

In Python, simply call a class/as if it were a function to create a new instance of the class. There is no explicit new
operator like C++ or Java.

5.4.1. Garbage Collection

If creating new instances is easy, destroying them is even easier. In general, there is no need to explicitly free
instances, because they are freed automatically when the variables assigned to them go out of scope. Memory leal
are rare in Python.

Example 5.8. Trying to Implement a Memory Leak

>>> def leakmem():
f = fileinfo.FileInfo('/music/_singles/kairo.mp3') (1]

>>> for i in range(100):
leakmem() (2]

1 Every time the leakmem function is called, you are creating an instance of Filelnfo and assigning it
to the variable f, which is a local variable within the function. Then the function ends without ever
freeing f, so you would expect a memory leak, but you would be wrong. When the function ends, the
local variable f goes out of scope. At this point, there are no longer any references to the newly created
instance of Filelnfo (since you never assigned it to anything other than f), so Python destroys the

Dive Into Python 53

instance for us.

® No matter how many times you call the leakmem function, it will never leak memory, because every

time, Python will destroy the newly created Filelnfo class before returning from leakmem.
The technical term for this form of garbage collection is "reference counting”. Python keeps a list of references to
every instance created. In the above example, there was only one reference to the Filelnfo instance: the local
variable f. When the function ends, the variable f goes out of scope, so the reference count drops to 0, and Python
destroys the instance automatically.

In previous versions of Python, there were situations where reference counting failed, and Python couldn't clean up
after you. If you created two instances that referenced each other (for instance, a doubly-linked list, where each no
has a pointer to the previous and next node in the list), neither instance would ever be destroyed automatically bec:
Python (correctly) believed that there is always a reference to each instance. Python 2.0 has an additional form of
garbage collection called "mark—and-sweep" which is smart enough to notice this virtual gridlock and clean up
circular references correctly.

As a former philosophy major, it disturbs me to think that things disappear when no one is looking at them, but that"
exactly what happens in Python. In general, you can simply forget about memory management and let Python cleal
up after you.

Further Reading on Garbage Collection

» Python Library Reference (http://www.python.org/doc/current/lib/) summarizes built—in attributes like
__class__ (http://lwww.python.org/doc/current/lib/specialattrs.html).

» Python Library Reference (http://www.python.org/doc/current/lib/) documents the gc module
(http:/iwww.python.org/doc/current/lib/module—gc.html), which gives you low-level control over Python's
garbage collection.

5.5. Exploring UserDict: A Wrapper Class

As you've seen, Filelnfo is a class that acts like a dictionary. To explore this further, let's look at the UserDict
class in the UserDict module, which is the ancestor of the Filelnfo class. This is nothing special; the class is
written in Python and stored in a .py file, just like any other Python code. In particular, it's stored in the lib
directory in your Python installation.

In the ActivePython IDE oniWindows, you can quickly open any module in your library path by selecting
File—>Locate... (Ctrl-L).

Example 5.9. Defining the UserDict Class

class UserDict: (1]
def _init__(self, dict=None): (2]
self.data = {} (3]

if dict is not None: self.update(dict) 006

@ Note that UserDict is a base class, not inherited from any other class.
(2]

Thisisthe __init__ method that you overrode in the Filelnfo class. Note that the argument list in

this ancestor class is different than the descendant. That's okay; each subclass can have its own set of
arguments, as long as it calls the ancestor with the correct arguments. Here the ancestor class has a way
to define initial values (by passing a dictionary in the dict argument) which the Filelnfo does not

use.

Dive Into Python 54

http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/specialattrs.html
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-gc.html

© Python supports data attributes (called "instance variables" in Java and Powerbuilder, and "member
variables" in C++). Data attributes are pieces of data held by a specific instance of a class. In this case,
each instance of UserDict will have a data attribute data. To reference this attribute from code
outside the class, you qualify it with the instance name, instance.data, in the same way that you
qualify a function with its module name. To reference a data attribute from within the class, you use
self as the qualifier. By convention, all data attributes are initialized to reasonable values in the
__init__ method. However, this is not required, since data attributes, like local variables, spring into
existence when they are first assigned a value.

Q@ The update method is a dictionary duplicator: it copies all the keys and values from one dictionary to
another. This does not clear the target dictionary first; if the target dictionary already has some keys, the
ones from the source dictionary will be overwritten, but others will be left untouched. Think of update
as a merge function, not a copy function.

® Thisisa syntax you may not have seen before (I haven't used it in the examples in this book). It's an if
statement, but instead of having an indented block starting on the next line, there is just a single
statement on the same line, after the colon. This is perfectly legal syntax, which is just a shortcut you
can use when you have only one statement in a block. (It's like specifying a single statement without
braces in C++.) You can use this syntax, or you can have indented code on subsequent lines, but you
can't do both for the same block.

Java and Powerbuilder support function overloading by argument list, i.e. one class can have multiple methods witt
the same name but a different number of arguments, or arguments of different types. Other languages (most notab
PL/SQL) even support function overloading by argument name; i.e. one class can have multiple methods with the
same name and the same number of arguments of the same type but different argument names. Python supports
neither of these; it has no form of function overloading whatsoever. Methods are defined solely by their name, and
there can be only one method per class with a given name. So if a descendant class has an __init__ method, it
always overrides the ancestor __init__ method, even if the descendant defines it with a different argument list.

And the same rule applies to any other method.

Guido, the original authoref Python, explains method overriding this way: "Derived classes may override methods
of their base classes. Because methods have no special privileges when calling other methods of the same object,
method of a base class that calls another method defined in the same base class, may in fact end up calling a mett
of a derived class that overrides it. (For C++ programmers: all methods in Python are effectively virtual.)" If that
doesn't make sense to you (it confuses the hell out of me), feel free to ignore it. | just thought I'd pass it along.

Always assign an initial vallie to all of an instance's data attributes in the __init__method. It will save you hours
of debugging later, tracking down AttributeError exceptions because you're referencing uninitialized (and
therefore non—existent) attributes.

Example 5.10. UserDict Normal Methods

def clear(self): self.data.clear()
def copy(self):

if self.__class__is UserDict:

return UserDict(self.data)

import copy

return copy.copy(self)
def keys(self): return self.data.keys()
def items(self): return self.data.items()
def values(self): return self.data.values()

@ © o0e

@ clearis a normal class method; it is publicly available to be called by anyone at any time. Notice that clear,
like all class methods, has self as its first argument. (Remember that you don't include self when you call
the method; it's something that Python adds for you.) Also note the basic technique of this wrapper class: stor
a real dictionary (data) as a data attribute, define all the methods that a real dictionary has, and have each
class method redirect to the corresponding method on the real dictionary. (In case you'd forgotten, a dictionar

Dive Into Python 55

clear method deletes all of its keys and their associated values.)

® The copy method of a real dictionary returns a new dictionary that is an exact duplicate of the original (all the
same key-value pairs). But UserDict can't simply redirect to self.data.copy, because that method
returns a real dictionary, and what you want is to return a new instance that is the same class as self.

® You use the __class__ attribute to see if self is a UserDict; if so, you're golden, because you know how
to copy a UserDict: just create a new UserDict and give it the real dictionary that you've squirreled away
in self.data. Then you immediately return the new UserDict you don't even get to the import copy
on the next line.

O i self. _class__is not UserDict, then self must be some subclass of UserDict (like maybe
Filelnfo), in which case life gets trickier. UserDict doesn't know how to make an exact copy of one of its
descendants; there could, for instance, be other data attributes defined in the subclass, so you would need to
iterate through them and make sure to copy all of them. Luckily, Python comes with a module to do exactly
this, and it's called copy. | won't go into the details here (though it's a wicked cool module, if you're ever
inclined to dive into it on your own). Suffice it to say that copy can copy arbitrary Python objects, and that's
how you're using it here.

® The rest of the methods are straightforward, redirecting the calls to the built—-in methods on self.data.

In versions of Python priorito,2.2, you could not directly subclass built-in datatypes like strings, lists, and
dictionaries. To compensate for this, Python comes with wrapper classes that mimic the behavior of these built—in
datatypes: UserString, UserList, and UserDict. Using a combination of normal and special methods, the

UserDict class does an excellent imitation of a dictionary. In Python 2.2 and later, you can inherit classes directly
from built-in datatypes like dict. An example of this is given in the examples that come with this book, in
fileinfo_fromdict.py.

In Python, you can inherit directly from the dict built-in datatype, as shown in this example. There are three
differences here compared to the UserDict version.

Example 5.11. Inheriting Directly from Built-In Datatype dict

class Filelnfo(dict): (1]
"store file metadata"
def __init__(self, flename=None): (2]

self["name"] = filename

© The first difference is that you don't need to import the UserDict module, since dict is a built-in datatype
and is always available. The second is that you are inheriting from dict directly, instead of from
UserDict.UserDict.

® The third difference is subtle but important. Because of the way UserDict works internally, it requires you to
manually call its __init__ method to properly initialize its internal data structures. dict does not work like
this; it is not a wrapper, and it requires no explicit initialization.

Further Reading on UserDict
» Python Library Reference (http://www.python.org/doc/current/lib/) documents the UserDict module

(http://www.python.org/doc/current/lib/module—UserDict.html) and the copy module
(http://www.python.org/doc/current/lib/module—copy.html).

5.6. Special Class Methods

In addition to normal class methods, there are a number of special methods that Python classes can define. Insteac
being called directly by your code (like normal methods), special methods are called for you by Python in particular
circumstances or when specific syntax is used.

Dive Into Python 56

http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-UserDict.html
http://www.python.org/doc/current/lib/module-copy.html

As you saw in the previous section, normal methods go a long way towards wrapping a dictionary in a class. But
normal methods alone are not enough, because there are a lot of things you can do with dictionaries besides call
methods on them. For starters, you can get and set items with a syntax that doesn't include explicitly invoking
methods. This is where special class methods come in: they provide a way to map non—-method-calling syntax into
method calls.

5.6.1. Getting and Setting Items

Example 5.12. The _ getitem__ Special Method
def __getitem__ (self, key): return self.data[key]

>>> f = fileinfo.Filelnfo("/music/_singles/kairo.mp3")
>>> f

{'name":'/music/_singles/kairo.mp3'}

>>>f,_ getitem__("name")
'/music/_singles/kairo.mp3'

>>> f["name"] 2]
‘/music/_singles/kairo.mp3'

©® The getitem__ special method looks simple enough. Like the normal methods clear, keys, and
values, it just redirects to the dictionary to return its value. But how does it get called? Well, you can call
__getitem___directly, but in practice you wouldn't actually do that; I'm just doing it here to show you how it
works. The right way to use __getitem___is to get Python to call it for you.

@ This looks just like the syntax you would use to get a dictionary value, and in fact it returns the value you
would expect. But here's the missing link: under the covers, Python has converted this syntax to the method c
f.__getitem__ ("name"). That's why __ getitem___is a special class method; not only can you call it
yourself, you can get Python to call it for you by using the right syntax.

Of course, Python has a __setitem___ special method to go along with __getitem__, as shown in the next

example.

Example 5.13. The __ setitem___ Special Method
def __setitem__ (self, key, item): self.datalkey] = item

>>> f

{'name":'/music/_singles/kairo.mp3'}

>>>f,_ setitem__ ("genre", 31)

>>> f

{'name":'/music/_singles/kairo.mp3', 'genre":31}
>>> f["genre"] = 32

>>> f

{'name":'/music/_singles/kairo.mp3’, ‘genre":32}

Q Like the __getitem__ method, __setitem___ simply redirects to the real dictionary
self.data to do its work. And like __getitem__, you wouldn't ordinarily call it directly
like this; Python calls __setitem___ for you when you use the right syntax.

@ This looks like regular dictionary syntax, except of course that f is really a class that's trying
very hard to masquerade as a dictionary, and __setitem___is an essential part of that
masquerade. This line of code actually calls f.__setitem__ ("genre”, 32) under the
covers.

Dive Into Python 57

__setitem___is a special class method because it gets called for you, but it's still a class method. Just as easily as
the _ setitem__ method was defined in UserDict, you can redefine it in the descendant class to override the
ancestor method. This allows you to define classes that act like dictionaries in some ways but define their own
behavior above and beyond the built-in dictionary.

This concept is the basis of the entire framewaork you're studying in this chapter. Each file type can have a handler
class that knows how to get metadata from a particular type of file. Once some attributes (like the file's name and
location) are known, the handler class knows how to derive other attributes automatically. This is done by overriding
the _ setitem__ method, checking for particular keys, and adding additional processing when they are found.

For example, MP3Filelnfo is a descendant of FileInfo. When an MP3Filelnfo’'s name is set, it doesn't just

set the name key (like the ancestor Filelnfo does); it also looks in the file itself for MP3 tags and populates a
whole set of keys. The next example shows how this works.

Example 5.14. Overriding __setitem___ in MP3Filelnfo

def __setitem__ (self, key, item): (1]
if key == "name" and item: (2]
self.__parse(item) (3]
FileInfo.__setitem__ (self, key, item) (4

@ Notice that this __setitem___ method is defined exactly the same way as the ancestor method. This is
important, since Python will be calling the method for you, and it expects it to be defined with a certain numbe
of arguments. (Technically speaking, the names of the arguments don't matter; only the number of arguments
important.)

® Here's the crux of the entire MP3Filelnfo class: if you're assigning a value to the name key, you want to do
something extra.

® The extra processing you do for names is encapsulated in the __parse method. This is another class method
defined in MP3Filelnfo, and when you call it, you qualify it with self. Just calling __parse would look
for a normal function defined outside the class, which is not what you want. Calling self.__parse will look
for a class method defined within the class. This isn't anything new; you reference data attributes the same wi

Q After doing this extra processing, you want to call the ancestor method. Remember that this is never done for
you in Python; you must do it manually. Note that you're calling the immediate ancestor, Filelnfo, even
though it doesn't have a __setitem__ method. That's okay, because Python will walk up the ancestor tree
until it finds a class with the method you're calling, so this line of code will eventually find and call the
__setitem___ defined in UserDict.

When accessing data attribtites within a class, you need to qualify the attribute name: self.attribute. When
calling other methods within a class, you need to qualify the method name: self.method.

Example 5.15. Setting an MP3Filelnfo's name

>>> import fileinfo

>>> mp3file = fileinfo.MP3Filelnfo() 1]
>>> mp3file

{'/name":None}

>>> mp3file["'name”] = "/music/_singles/kairo.mp3" (2]
>>> mp3file

{'album": 'Rave Mix', 'artist’: ***DJ MARY-JANE***', 'genre": 31,

title": 'KAIRO***THE BEST GOA', 'name'": '/music/_singles/kairo.mp3',
'year': '2000', ‘comment”: 'http://mp3.com/DIMARYJANE'}

>>> mp3file["'name"] = "/music/_singles/sidewinder.mp3" (3]
>>> mp3file

{'album’: ", "artist": "'The Cynic Project’, 'genre": 18, 'title": 'Sidewinder",

Dive Into Python 58

‘name": '/music/_singles/sidewinder.mp3’, 'year": '2000',
‘comment’: 'http://mp3.com/cynicproject'}

Q9 First, you create an instance of MP3Filelnfo, without passing it a filename. (You can get away with
this because the filename argument of the __init__ method is optional.) Since MP3Filelnfo
has no __init_ method of its own, Python walks up the ancestor tree and finds the __init__
method of FileInfo. This __init _ method manually calls the __init_ method of
UserDict and then sets the name key to filename, which is None, since you didn't pass a
filename. Thus, mp3file initially looks like a dictionary with one key, name, whose value is None.

® Now the real fun begins. Setting the name key of mp3file triggers the __setitem__ method on
MP3Filelnfo (not UserDict), which notices that you're setting the name key with a real value
and calls self.__parse. Although you haven't traced through the __ parse method yet, you can
see from the output that it sets several other keys: album, artist, genre, title, year, and
comment.

© Modifying the name key will go through the same process again: Python calls __setitem__, which
calls self.___parse, which sets all the other keys.

5.7. Advanced Special Class Methods

Python has more special methods than just __getitem__ and __setitem__. Some of them let you emulate
functionality that you may not even know about.

This example shows some of the other special methods in UserDict.

Example 5.16. More Special Methods in UserDict

def __repr__(self): return repr(self.data) (1]
def _cmp__(self, dict): (2]
if isinstance(dict, UserDict):
return cmp(self.data, dict.data)
else:
return cmp(self.data, dict)
def __len__(self): return len(self.data) (3]
def __delitem__(self, key): del self.data[key] (4]
o __repr___is a special method that is called when you call repr(instance). The repr function

is a built=in function that returns a string representation of an object. It works on any object, not just
class instances. You're already intimately familiar with repr and you don't even know it. In the
interactive window, when you type just a variable name and press the ENTER key, Python uses repr
to display the variable's value. Go create a dictionary d with some data and then print repr(d) to

see for yourself.

(2 __cmp___is called when you compare class instances. In general, you can compare any two Python
objects, not just class instances, by using ==. There are rules that define when built-in datatypes are
considered equal; for instance, dictionaries are equal when they have all the same keys and values, and
strings are equal when they are the same length and contain the same sequence of characters. For class
instances, you can define the __cmp__ method and code the comparison logic yourself, and then you
can use == to compare instances of your class and Python will call your __cmp___ special method for
you.

© __len___is called when you call len(instance). The len function is a built—in function that
returns the length of an object. It works on any object that could reasonably be thought of as having a
length. The len of a string is its number of characters; the len of a dictionary is its number of keys;
the len of a list or tuple is its number of elements. For class instances, define the __len_ method

Dive Into Python 59

and code the length calculation yourself, and then call len(instance) and Python will call your
__len__ special method for you.

4 __delitem___is called when you call del instance[key], which you may remember as the
way to delete individual items from a dictionary. When you use del on a class instance, Python calls
the __ delitem__ special method for you.

In Java, you determine whether two string variables reference the same physical memory location by using strl

== str2. This is called object identity, and it is written in Python as strl is str2. To compare string values in

Java, you would use strl.equals(str2); in Python, you would use strl == str2. Java programmers who

have been taught to believe that the world is a better place because == in Java compares by identity instead of by
value may have a difficult time adjusting to Python's lack of such "gotchas".

At this point, you may be thinking, "All this work just to do something in a class that | can do with a built-in
datatype.” And it's true that life would be easier (and the entire UserDict class would be unnecessary) if you could
inherit from built—in datatypes like a dictionary. But even if you could, special methods would still be useful, becaus
they can be used in any class, not just wrapper classes like UserDict.

Special methods mean that any class can store key/value pairs like a dictionary, just by defining the __setitem___
method. Any class can act like a sequence, just by defining the __getitem__ method. Any class that defines the
__cmp__ method can be compared with ==. And if your class represents something that has a length, don't define :
GetLength method; define the __len__ method and use len(instance).

While other object-orientedlanguages only let you define the physical model of an object ("this object has a
GetLength method"), Python's special class methods like __len__ allow you to define the logical model of an
object ("this object has a length™).

Python has a lot of other special methods. There's a whole set of them that let classes act like numbers, allowing yc
to add, subtract, and do other arithmetic operations on class instances. (The canonical example of this is a class th
represents complex numbers, numbers with both real and imaginary components.) The _ call _ method lets a clas
act like a function, allowing you to call a class instance directly. And there are other special methods that allow
classes to have read-only and write—only data attributes; you'll talk more about those in later chapters.

Further Reading on Special Class Methods

» Python Reference Manual (http://www.python.org/doc/current/ref/) documents all the special class methods
(http://www.python.org/doc/current/ref/specialnames.html).

5.8. Introducing Class Attributes

You already know about data attributes, which are variables owned by a specific instance of a class. Python also
supports class attributes, which are variables owned by the class itself.

Example 5.17. Introducing Class Attributes

class MP3Filelnfo(Filelnfo):

"store ID3v1.0 MP3 tags”

tagDataMap = {"title" : (3, 33, stripnulls),
"artist" : (33, 63, stripnulls),
"album" : (63, 93, stripnulls),
"year" (93, 97, stripnulls),
"comment" : (97, 126, stripnulls),
"genre" : (127, 128, ord)}

Dive Into Python 60

http://www.python.org/doc/current/ref/
http://www.python.org/doc/current/ref/specialnames.html

>>> import fileinfo

>>> fileinfo.MP3Filelnfo (1]
<class fileinfo.MP3FileInfo at 01257FDC>

>>> fileinfo.MP3FileInfo.tagDataMap

{ttitle": (3, 33, <function stripnulls at 0260C8D4>),
‘genre": (127, 128, <built-in function ord>),

‘artist: (33, 63, <function stripnulls at 0260C8D4>),
'year": (93, 97, <function stripnulls at 0260C8D4>),
‘comment’: (97, 126, <function stripnulls at 0260C8D4>),
‘album’: (63, 93, <function stripnulls at 0260C8D4>)}
>>>m = fileinfo.MP3Filelnfo()

>>> m.tagDataMap

{ttitle": (3, 33, <function stripnulls at 0260C8D4>),
‘genre": (127, 128, <built-in function ord>),

‘artist: (33, 63, <function stripnulls at 0260C8D4>),
'year": (93, 97, <function stripnulls at 0260C8D4>),
‘comment’: (97, 126, <function stripnulls at 0260C8D4>),
‘album’: (63, 93, <function stripnulls at 0260C8D4>)}

@ MP3Filelnfo is the class itself, not any particular instance of the class.

2] tagDataMap is a class attribute: literally, an attribute of the class. It is available before creating any
instances of the class.

® Class attributes are available both through direct reference to the class and through any instance of the
class.

In Java, both static variables (called class attributes in Python) and instance variables (called data attributes in
Python) are defined immediately after the class definition (one with the static keyword, one without). In Python,
only class attributes can be defined here; data attributes are defined in the __init__ method.

Class attributes can be used as class—-level constants (which is how you use them in MP3FileInfo), but they are not
really constants. You can also change them.

There are no constants in@ython. Everything can be changed if you try hard enough. This fits with one of the core
principles of Python: bad behavior should be discouraged but not banned. If you really want to change the value of
None, you can do it, but don't come running to me when your code is impossible to debug.

Example 5.18. Modifying Class Attributes

>>> class counter:
count=0
def __init__ (self):
self.__class__.count+=1

® Qe

>>> counter

<class __main__.counter at 010EAECC>

>>> counter.count ©
0

>>> ¢ = counter()

>>> c.count 4
1

>>> counter.count

1

>>> d = counter() 5]
>>> d.count

2

>>> c.count

2

>>> counter.count

Dive Into Python 61

N

count is a class attribute of the counter class.

__class___is a built=in attribute of every class instance (of every class). It is a reference to the class that
self is an instance of (in this case, the counter class).

Because count is a class attribute, it is available through direct reference to the class, before you have create:
any instances of the class.

Creating an instance of the class calls the __init__ method, which increments the class attribute count by
1. This affects the class itself, not just the newly created instance.

Creating a second instance will increment the class attribute count again. Notice how the class attribute is
shared by the class and all instances of the class.

5.9. Private Functions

@ © © oe

Like most languages, Python has the concept of private elements:

* Private functions, which can't be called from outside their module
* Private class methods, which can't be called from outside their class
* Private attributes, which can't be accessed from outside their class.

Unlike in most languages, whether a Python function, method, or attribute is private or public is determined entirely
by its name.

If the name of a Python function, class method, or attribute starts with (but doesn't end with) two underscores, it's
private; everything else is public. Python has no concept of protected class methods (accessible only in their own cl
and descendant classes). Class methods are either private (accessible only in their own class) or public (accessible
from anywhere).

In MP3Filelnfo, there are two methods: __parse and __setitem__. As you have already discussed,
__setitem___is a special method; normally, you would call it indirectly by using the dictionary syntax on a class
instance, but it is public, and you could call it directly (even from outside the fileinfo module) if you had a really
good reason. However, __parse is private, because it has two underscores at the beginning of its name.

In Python, all special metheds (like __setitem__) and built—in attributes (like __doc__) follow a standard
naming convention: they both start with and end with two underscores. Don't name your own methods and attribute
this way, because it will only confuse you (and others) later.

Example 5.19. Trying to Call a Private Method

>>> import fileinfo
>>>m = fileinfo.MP3Filelnfo()
>>>m.__ parse("/music/_singles/kairo.mp3") 1]
Traceback (innermost last):
File "<interactive input>", line 1, in ?
AttributeError: '"MP3FileInfo' instance has no attribute '__parse'

QO i you try to call a private method, Python will raise a slightly misleading exception, saying that the method
does not exist. Of course it does exist, but it's private, so it's not accessible outside the class.Strictly speaking
private methods are accessible outside their class, just not easily accessible. Nothing in Python is truly private
internally, the names of private methods and attributes are mangled and unmangled on the fly to make them
seem inaccessible by their given names. You can access the __parse method of the MP3Filelnfo class by

Dive Into Python 62

the name _MP3Fileinfo__parse. Acknowledge that this is interesting, but promise to never, ever do it in
real code. Private methods are private for a reason, but like many other things in Python, their privateness is
ultimately a matter of convention, not force.

Further Reading on Private Functions

» Python Tutorial (http://www.python.org/doc/current/tut/tut.html) discusses the inner workings of private
variables (http://www.python.org/doc/current/tut/node11.htmI#SECTION0011600000000000000000).

5.10. Summary

That's it for the hard—core object trickery. You'll see a real-world application of special class methods in Chapter 12
which uses getattr to create a proxy to a remote web service.

The next chapter will continue using this code sample to explore other Python concepts, such as exceptions, file
objects, and for loops.

Before diving into the next chapter, make sure you're comfortable doing all of these things:

 Importing modules using either import module or from module import

 Defining and instantiating classes

« Defining __init__ methods and other special class methods, and understanding when they are called
« Subclassing UserDict to define classes that act like dictionaries

 Defining data attributes and class attributes, and understanding the differences between them

« Defining private attributes and methods

Dive Into Python 63

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node11.html#SECTION0011600000000000000000

Chapter 6. Exceptions and File Handling

In this chapter, you will dive into exceptions, file objects, for loops, and the os and sys modules. If you've used
exceptions in another programming language, you can skim the first section to get a sense of Python's syntax. Be s
to tune in again for file handling.

6.1. Handling Exceptions

Like many other programming languages, Python has exception handling via try...except blocks.

Python uses try...except tochandle exceptions and raise to generate them. Java and C++ use try...catch

to handle exceptions, and throw to generate them.

Exceptions are everywhere in Python. Virtually every module in the standard Python library uses them, and Python
itself will raise them in a lot of different circumstances. You've already seen them repeatedly throughout this book.

» Accessing a non-—existent dictionary key will raise a KeyError exception.

» Searching a list for a non—existent value will raise a ValueError exception.
« Calling a non—existent method will raise an AttributeError exception.

» Referencing a non-existent variable will raise a NameError exception.

» Mixing datatypes without coercion will raise a TypeError exception.

In each of these cases, you were simply playing around in the Python IDE: an error occurred, the exception was
printed (depending on your IDE, perhaps in an intentionally jarring shade of red), and that was that. This is called al
unhandled exception. When the exception was raised, there was no code to explicitly notice it and deal with it, so it
bubbled its way back to the default behavior built in to Python, which is to spit out some debugging information and
give up. In the IDE, that's no big deal, but if that happened while your actual Python program was running, the entir
program would come to a screeching halt.

An exception doesn't need result in a complete program crash, though. Exceptions, when raised, can be handled.
Sometimes an exception is really because you have a bug in your code (like accessing a variable that doesn't exist
but many times, an exception is something you can anticipate. If you're opening a file, it might not exist. If you're
connecting to a database, it might be unavailable, or you might not have the correct security credentials to access i
you know a line of code may raise an exception, you should handle the exception using a try...except block.

Example 6.1. Opening a Non—-Existent File

>>> fsock = open("/notthere”, "r") (1]
Traceback (innermost last):
File "<interactive input>", line 1, in ?
IOError: [Errno 2] No such file or directory: '/notthere'
>>> try:
fsock = open("/notthere")
... except IOError:
print "The file does not exist, exiting gracefully"
... print "This line will always print"
The file does not exist, exiting gracefully
This line will always print

o0

o Using the built—in open function, you can try to open a file for reading (more on open in the next section).
But the file doesn't exist, so this raises the IOError exception. Since you haven't provided any explicit check

Dive Into Python 64

for an IOError exception, Python just prints out some debugging information about what happened and then
gives up.
You're trying to open the same non-existent file, but this time you're doing it within a try...except block.

When the open method raises an IOError exception, you're ready for it. The except IOError: line
catches the exception and executes your own block of code, which in this case just prints a more pleasant err
message.

® oOncean exception has been handled, processing continues normally on the first line after the try...except
block. Note that this line will always print, whether or not an exception occurs. If you really did have a file
called notthere in your root directory, the call to open would succeed, the except clause would be
ignored, and this line would still be executed.
Exceptions may seem unfriendly (after all, if you don't catch the exception, your entire program will crash), but
consider the alternative. Would you rather get back an unusable file object to a non—existent file? You'd need to che
its validity somehow anyway, and if you forgot, somewhere down the line, your program would give you strange
errors somewhere down the line that you would need to trace back to the source. I'm sure you've experienced this,
you know it's not fun. With exceptions, errors occur immediately, and you can handle them in a standard way at the
source of the problem.

@0

6.1.1. Using Exceptions For Other Purposes

There are a lot of other uses for exceptions besides handling actual error conditions. A common use in the standarc
Python library is to try to import a module, and then check whether it worked. Importing a module that does not exis
will raise an ImportError exception. You can use this to define multiple levels of functionality based on which
modules are available at run—time, or to support multiple platforms (where platform—specific code is separated into
different modules).

You can also define your own exceptions by creating a class that inherits from the built—in Exception class, and
then raise your exceptions with the raise command. See the further reading section if you're interested in doing this

The next example demonstrates how to use an exception to support platform—specific functionality. This code come
from the getpass module, a wrapper module for getting a password from the user. Getting a password is
accomplished differently on UNIX, Windows, and Mac OS platforms, but this code encapsulates all of those
differences.

Example 6.2. Supporting Platform—Specific Functionality

Bind the name getpass to the appropriate function
try:
import termios, TERMIOS (1]
except ImportError:
try:
import msvert (2]
except ImportError:
try:
from EasyDialogs import AskPassword
except ImportError:
getpass = default_getpass
else:
getpass = AskPassword
else:
getpass = win_getpass
else:
getpass = unix_getpass

®

ol

Dive Into Python 65

Q® termiosisa UNIX-specific module that provides low—-level control over the input terminal. If this module is
not available (because it's not on your system, or your system doesn't support it), the import fails and Python
raises an ImportError, which you catch.

@ ok, you didn't have termios, so let's try msvcrt, which is a Windows—specific module that provides an
API to many useful functions in the Microsoft Visual C++ runtime services. If this import fails, Python will
raise an ImportError, which you catch.

® if the first two didn't work, you try to import a function from EasyDialogs, which is a Mac OS-specific
module that provides functions to pop up dialog boxes of various types. Once again, if this import fails, Pythor
will raise an ImportError, which you catch.

® None of these platform—specific modules is available (which is possible, since Python has been ported to a lo
of different platforms), so you need to fall back on a default password input function (which is defined
elsewhere in the getpass module). Notice what you're doing here: assigning the function
default_getpass to the variable getpass. If you read the official getpass documentation, it tells you
that the getpass module defines a getpass function. It does this by binding getpass to the correct
function for your platform. Then when you call the getpass function, you're really calling a
platform—specific function that this code has set up for you. You don't need to know or care which platform
your code is running on —— just call getpass, and it will always do the right thing.

@ A try...except block can have an else clause, like an if statement. If no exception is raised during the
try block, the else clause is executed afterwards. In this case, that means that the from EasyDialogs
import AskPassword import worked, so you should bind getpass to the AskPassword function.

Each of the other try...except blocks has similar else clauses to bind getpass to the appropriate
function when you find an import that works.

Further Reading on Exception Handling

e Python Tutorial (http://www.python.org/doc/current/tut/tut.html) discusses defining and raising your own
exceptions, and handling multiple exceptions at once
(http://www.python.org/doc/current/tut/node 10.htmI#SECTION0010400000000000000000).

« Python Library Reference (http://www.python.org/doc/current/lib/) summarizes all the built—in exceptions
(http://mwww.python.org/doc/current/lib/module—exceptions.html).

« Python Library Reference (http://www.python.org/doc/current/lib/) documents the getpass
(http://www.python.org/doc/current/lib/module—getpass.html) module.

« Python Library Reference (http://www.python.org/doc/current/lib/) documents the traceback module
(http://mwww.python.org/doc/current/lib/module—-traceback.html), which provides low-level access to
exception attributes after an exception is raised.

« Python Reference Manual (http://www.python.org/doc/current/ref/) discusses the inner workings of the
try...except block (http://www.python.org/doc/current/ref/try.html).

6.2. Working with File Objects

Python has a built—in function, open, for opening a file on disk. open returns a file object, which has methods and
attributes for getting information about and manipulating the opened file.

Example 6.3. Opening a File

>>> f = open("/music/_singles/kairo.mp3", "rb")

>>> f

<open file '/music/_singles/kairo.mp3', mode 'rb' at 010E3988>
>>> f.mode

b’

>>> f.name

‘/music/_singles/kairo.mp3'

© @ 09

Dive Into Python 66

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node10.html#SECTION0010400000000000000000
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-exceptions.html
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-getpass.html
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-traceback.html
http://www.python.org/doc/current/ref/
http://www.python.org/doc/current/ref/try.html

(2]

(3
4

The open method can take up to three parameters: a filename, a mode, and a buffering parameter. Only the
first one, the filename, is required; the other two are optional. If not specified, the file is opened for reading in
text mode. Here you are opening the file for reading in binary mode. (print open.__doc__ displays a

great explanation of all the possible modes.)

The open function returns an object (by now, this should not surprise you). A file object has several useful
attributes.

The mode attribute of a file object tells you in which mode the file was opened.

The name attribute of a file object tells you the name of the file that the file object has open.

6.2.1. Reading Files

After you open a file, the first thing you'll want to do is read from it, as shown in the next example.

Example 6.4. Reading a File

>>> f

<open file '/music/_singles/kairo.mp3’, mode 'rb' at 010E3988>
>>> f.tell()

0

>>> f.seek(-128, 2)
>>> f.tell()

o®

7542909

>>> tagData = f.read(128) (4

>>> tagData

"TAGKAIRO***THE BEST GOA ***DJ MARY-JANE***

Rave Mix 2000http://mp3.com/DIMARYJANE \037'
>>> f.tell()

7543037

()

(5]

A file object maintains state about the file it has open. The tell method of a file object tells you your
current position in the open file. Since you haven't done anything with this file yet, the current position is
0, which is the beginning of the file.

The seek method of a file object moves to another position in the open file. The second parameter
specifies what the first one means; 0 means move to an absolute position (counting from the start of the
file), 1 means move to a relative position (counting from the current position), and 2 means move to a
position relative to the end of the file. Since the MP3 tags you're looking for are stored at the end of the
file, you use 2 and tell the file object to move to a position 128 bytes from the end of the file.

The tell method confirms that the current file position has moved.

The read method reads a specified number of bytes from the open file and returns a string with the data
that was read. The optional parameter specifies the maximum number of bytes to read. If no parameter is
specified, read will read until the end of the file. (You could have simply said read() here, since you

know exactly where you are in the file and you are, in fact, reading the last 128 bytes.) The read data is
assigned to the tagData variable, and the current position is updated based on how many bytes were
read.

The tell method confirms that the current position has moved. If you do the math, you'll see that after
reading 128 bytes, the position has been incremented by 128.

6.2.2. Closing Files

Open files consume system resources, and depending on the file mode, other programs may not be able to access
them. It's important to close files as soon as you're finished with them.

Dive Into Python 67

Example 6.5. Closing a File

>>> f

<open file '/music/_singles/kairo.mp3’, mode 'rb' at 010E3988>
>>> f.closed 1]

False

>>> f.close() (2]

>>> f

<closed file '/music/_singles/kairo.mp3', mode 'rb' at 010E3988>
>>> f.closed

True

>>> f.seek(0) (4

Traceback (innermost last):

File "<interactive input>", line 1, in ?
ValueError: I/O operation on closed file
>>> f.tell()

Traceback (innermost last):

File "<interactive input>", line 1, in ?
ValueError: I/O operation on closed file
>>> f.read()

Traceback (innermost last):

File "<interactive input>", line 1, in ?
ValueError: 1/0 operation on closed file
>>> f.close()

(2]
(3
4

(5]

The closed attribute of a file object indicates whether the object has a file open or not. In this case, the file is
still open (closed is False).

To close a file, call the close method of the file object. This frees the lock (if any) that you were holding on
the file, flushes buffered writes (if any) that the system hadn't gotten around to actually writing yet, and releas:
the system resources.

The closed attribute confirms that the file is closed.

Just because a file is closed doesn't mean that the file object ceases to exist. The variable f will continue to
exist until it goes out of scope or gets manually deleted. However, none of the methods that manipulate an op
file will work once the file has been closed; they all raise an exception.

Calling close on a file object whose file is already closed does not raise an exception; it fails silently.

6.2.3. Handling I/O Errors

Now you've seen enough to understand the file handling code in the fileinfo.py sample code from teh previous
chapter. This example shows how to safely open and read from a file and gracefully handle errors.

Example 6.6. File Objects in MP3Filelnfo

try:
fsock = open(filename, "rb", 0)
try:
fsock.seek(-128, 2)
tagdata = fsock.read(128)
finally:
fsock.close()

000 oe

except IOError: (6]
pass

Dive Into Python 68

Because opening and reading files is risky and may raise an exception, all of this code is wrapped in a
try...except block. (Hey, isn't standardized indentation great? This is where you start to appreciate it.)

The open function may raise an IOError. (Maybe the file doesn't exist.)
The seek method may raise an IOError. (Maybe the file is smaller than 128 bytes.)

The read method may raise an |IOError. (Maybe the disk has a bad sector, or it's on a network drive and the
network just went down.)

This is new: a try...finally block. Once the file has been opened successfully by the open function, you
want to make absolutely sure that you close it, even if an exception is raised by the seek or read methods.
That's what a try...finally block is for: code in the finally block will always be executed, even if

something in the try block raises an exception. Think of it as code that gets executed on the way out,
regardless of what happened before.

® Atlast, you handle your IOError exception. This could be the IOError exception raised by the call to
open, seek, or read. Here, you really don't care, because all you're going to do is ignore it silently and
continue. (Remember, pass is a Python statement that does nothing.) That's perfectly legal; "handling" an
exception can mean explicitly doing nothing. It still counts as handled, and processing will continue normally
on the next line of code after the try...except block.

6.2.4. Writing to Files

@ 00 @

As you would expect, you can also write to files in much the same way that you read from them. There are two basi
file modes:

 "Append" mode will add data to the end of the file.
« "write" mode will overwrite the file.

Either mode will create the file automatically if it doesn't already exist, so there's never a need for any sort of fiddly '
the log file doesn't exist yet, create a new empty file just so you can open it for the first time" logic. Just open it and
start writing.

Example 6.7. Writing to Files

>>> |ogfile = open(‘test.log’, 'w')
>>> |ogfile.write('test succeeded')
>>> |ogfile.close()

>>> print file('test.log’).read()

test succeeded

>>> |ogfile = open('test.log’, 'a’)
>>> |ogdfile.write('line 2)

>>> |odfile.close()

>>> print file(‘test.log’).read() (5
test succeededline 2

© ® o9

©® vou start boldly by creating either the new file test.log or overwrites the existing file, and opening
the file for writing. (The second parameter "w" means open the file for writing.) Yes, that's all as
dangerous as it sounds. | hope you didn't care about the previous contents of that file, because it's gone
now.

You can add data to the newly opened file with the write method of the file object returned by open.
file is a synonym for open. This one-liner opens the file, reads its contents, and prints them.

You happen to know that test.log exists (since you just finished writing to it), so you can open it and
append to it. (The "a" parameter means open the file for appending.) Actually you could do this even if
the file didn't exist, because opening the file for appending will create the file if necessary. But appending

OO0

Dive Into Python 69

will never harm the existing contents of the file.

® Aas you can see, both the original line you wrote and the second line you appended are now in
test.log. Also note that carriage returns are not included. Since you didn't write them explicitly to the
file either time, the file doesn't include them. You can write a carriage return with the "\n" character.
Since you didn't do this, everything you wrote to the file ended up smooshed together on the same line.

Further Reading on File Handling

* Python Tutorial (http://www.python.org/doc/current/tut/tut.html) discusses reading and writing files,
including how to read a file one line at a time into a list
(http://wvww.python.org/doc/current/tut/node9.htmI#SECTION009210000000000000000).

« eff-bot (http://www.effbot.org/guides/) discusses efficiency and performance of various ways of reading a fil
(http://www.effbot.org/guides/readline—performance.htm).

» Python Knowledge Base (http://www.fagts.com/knowledge—base/index.phtml/fid/199/) answers common
guestions about files (http://www.fagts.com/knowledge—base/index.phtml/fid/552).

» Python Library Reference (http://www.python.org/doc/current/lib/) summarizes all the file object methods
(http://www.python.org/doc/current/lib/bltin—file—objects.html).

6.3. Iterating with for Loops

Like most other languages, Python has for loops. The only reason you haven't seen them until now is that Python is
good at so many other things that you don't need them as often.

Most other languages don't have a powerful list datatype like Python, so you end up doing a lot of manual work,

specifying a start, end, and step to define a range of integers or characters or other iteratable entities. But in Pythor
for loop simply iterates over a list, the same way list comprehensions work.

Example 6.8. Introducing the for Loop

>>>li=[4a,'b, e

>>> for s in i: (1]
print s (2]

a

b

e

>>> print "\n"join(li) (3]

a

b

e

Q@ The syntax for a for loop is similar to list comprehensions. li is a list, and s will take the value of
each element in turn, starting from the first element.

® |ike an if statement or any other indented block, a for loop can have any number of lines of code in
it.

® This is the reason you haven't seen the for loop yet: you haven't needed it yet. It's amazing how often
you use for loops in other languages when all you really want is a join or a list comprehension.

Doing a "normal” (by Visual Basic standards) counter for loop is also simple.

Example 6.9. Simple Counters

>>> for i in range(5): (1]
print i

Dive Into Python 70

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node9.html#SECTION009210000000000000000
http://www.effbot.org/guides/
http://www.effbot.org/guides/readline-performance.htm
http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/index.phtml/fid/552
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/bltin-file-objects.html

A WNEFO

>>>li=[4a''b,'c,'d, 'e]
>>> for i in range(len(li)): (2]
print Ii[i]

®Qoo0oTo:

9 As you saw in Example 3.20, Assigning Consecutive Values , range produces a list of integers, which you
then loop through. | know it looks a bit odd, but it is occasionally (and | stress occasionally) useful to have a
counter loop.

® Don't ever do this. This is Visual Basic—style thinking. Break out of it. Just iterate through the list, as shown in
the previous example.

for loops are not just for simple counters. They can iterate through all kinds of things. Here is an example of using &
for loop to iterate through a dictionary.

Example 6.10. Iterating Through a Dictionary

>>> import 0s

>>> for k, v in os.environ.items(): 00
print "%s=%s" % (k, V)

USERPROFILE=C:\Documents and Settings\mpilgrim

OS=Windows_NT

COMPUTERNAME=MPILGRIM

USERNAME=mpilgrim

[...snip...]
>>> print "\n".join(["%s=%s" % (k, V)
for k, v in os.environ.items()]) (3

USERPROFILE=C:\Documents and Settings\mpilgrim
OS=Windows_NT

COMPUTERNAME=MPILGRIM
USERNAME=mpilgrim

[...snip...]

©® osenvironisa dictionary of the environment variables defined on your system. In Windows, these are your
user and system variables accessible from MS-DOS. In UNIX, they are the variables exported in your shell's
startup scripts. In Mac OS, there is no concept of environment variables, so this dictionary is empty.

12 os.environ.items() returns a list of tuples: [(keyl, valuel), (key2, value2), ...]. The
for loop iterates through this list. The first round, it assigns keyl to k and valuel to v, so k =
USERPROFILE and v = C:\Documents and Settings\mpilgrim. In the second round, k gets the
second key, OS, and v gets the corresponding value, Windows_NT.

® Wwith multi-variable assignment and list comprehensions, you can replace the entire for loop with a single
statement. Whether you actually do this in real code is a matter of personal coding style. | like it because it
makes it clear that what I'm doing is mapping a dictionary into a list, then joining the list into a single string.
Other programmers prefer to write this out as a for loop. The output is the same in either case, although this
version is slightly faster, because there is only one print statement instead of many.

Now we can look at the for loop in MP3FileInfo, from the sample fileinfo.py program introduced in

Dive Into Python 71

Chapter 5.

Example 6.11. for Loop in MP3Filelnfo

tagDataMap = {"title" : (3, 33, stripnulls),

6.4.

"artist" : (33, 63, stripnulls),

"album" : (63, 93, stripnulls),

"year" (93, 97, stripnulls),

"comment" : (97, 126, stripnulls),

"genre" : (127, 128, ord)} (1]

if tagdata[:3] == "TAG":
for tag, (start, end, parseFunc) in self.tagDataMap.items(): (2]
self[tag] = parseFunc(tagdata[start:end]) (3]

tagDataMap is a class attribute that defines the tags you're looking for in an MP3 file. Tags are stored in
fixed—length fields. Once you read the last 128 bytes of the file, bytes 3 through 32 of those are always the so
title, 33 through 62 are always the artist name, 63 through 92 are the album name, and so forth. Note that
tagDataMap is a dictionary of tuples, and each tuple contains two integers and a function reference.

This looks complicated, but it's not. The structure of the for variables matches the structure of the elements of
the list returned by items. Remember that items returns a list of tuples of the form (key, value). The

first element of that list is ("title", (3, 33, <function stripnulls>)), so the first time around

the loop, tag gets "title", start gets 3, end gets 33, and parseFunc gets the function stripnulls.

Now that you've extracted all the parameters for a single MP3 tag, saving the tag data is easy. You slice
tagdata from start to end to get the actual data for this tag, call parseFunc to post—process the data,
and assign this as the value for the key tag in the pseudo—dictionary self. After iterating through all the
elements in tagDataMap, self has the values for all the tags, and you know what that looks like.

Using sys.modules

Modules, like everything else in Python, are objects. Once imported, you can always get a reference to a module
through the global dictionary sys.modules.

Example 6.12. Introducing sys.modules

>>> import sys
>>> print '\n'.join(sys.modules.keys())

o

win32api
os.path

0s

exceptions
__main__

ntpath
nt
sys

__builtin__

site
signal

UserDict

stat

The sys module contains system-level information, such as the version of Python you're

Dive Into Python 72

running (sys.version or sys.version_info), and system-level options such as the
maximum allowed recursion depth (sys.getrecursionlimit() and
sys.setrecursionlimit()).

(2 sys.modules is a dictionary containing all the modules that have ever been imported since
Python was started; the key is the module name, the value is the module object. Note that this is
more than just the modules your program has imported. Python preloads some modules on
startup, and if you're using a Python IDE, sys.modules contains all the modules imported by
all the programs you've run within the IDE.

This example demonstrates how to use sys.modules.

Example 6.13. Using sys.modules

>>> import fileinfo (1]
>>> print '\n'.join(sys.modules.keys())
win32api

os.path

0s

fileinfo

exceptions

__main__

ntpath

nt

sys

__builtin_

site

signal

UserDict

stat

>>> fileinfo

<module ‘fileinfo' from *fileinfo.pyc'>
>>> sys.modules["fileinfo"]

<module ‘fileinfo' from *fileinfo.pyc'>

® As new modules are imported, they are added to sys.modules. This explains why importing the
same module twice is very fast: Python has already loaded and cached the module in
sys.modules, so importing the second time is simply a dictionary lookup.

® Given the name (as a string) of any previously—imported module, you can get a reference to the
module itself through the sys.modules dictionary.

The next example shows how to use the __module___ class attribute with the sys.modules dictionary to get a
reference to the module in which a class is defined.

Example 6.14. The __module__ Class Attribute

>>> from fileinfo import MP3Filelnfo

>>> MP3Filelnfo.__module__ (1]
fileinfo’
>>> sys.modules[MP3Filelnfo.__module__] (2

<module ‘fileinfo' from *fileinfo.pyc'>

® Every Python class has a built-in class attribute __module__, which is the name of the module in which the
class is defined.

(2 Combining this with the sys.modules dictionary, you can get a reference to the module in which a class is
defined.

Dive Into Python 73

Now you're ready to see how sys.modules is used in fileinfo.py, the sample program introduced in Chapter
5. This example shows that portion of the code.

Example 6.15. sys.modules in fileinfo.py

def getFilelnfoClass(filename, module=sys.modules|[FileInfo.__module__]): (1]
"get file info class from filename extension”
subclass = "%sFilelnfo" % os.path.splitext(filename)[1].upper()[1:] (2]
return hasattr(module, subclass) and getattr(module, subclass) or Filelnfo (3]

@ This is a function with two arguments; filename is required, but module is optional and defaults to
the module that contains the Filelnfo class. This looks inefficient, because you might expect Python
to evaluate the sys.modules expression every time the function is called. In fact, Python evaluates
default expressions only once, the first time the module is imported. As you'll see later, you never call
this function with a module argument, so module serves as a function—level constant.

@ voull plow through this line later, after you dive into the os module. For now, take it on faith that
subclass ends up as the name of a class, like MP3FileInfo.

® vou already know about getattr, which gets a reference to an object by name. hasattr is a
complementary function that checks whether an object has a particular attribute; in this case, whether a
module has a patrticular class (although it works for any object and any attribute, just like getattr).
In English, this line of code says, "If this module has the class named by subclass then return it,
otherwise return the base class Filelnfo."

Further Reading on Modules

» Python Tutorial (http://www.python.org/doc/current/tut/tut.html) discusses exactly when and how default
arguments are evaluated
(http://www.python.org/doc/current/tut/node6.htmi#SECTION006710000000000000000).

» Python Library Reference (http://www.python.org/doc/current/lib/) documents the sys
(http://www.python.org/doc/current/lib/module—sys.html) module.

6.5. Working with Directories

The os.path module has several functions for manipulating files and directories. Here, we're looking at handling
pathnames and listing the contents of a directory.

Example 6.16. Constructing Pathnames

>>> import 0s

>>> ps.path.join("c:\\music\\ap\\", "mahadeva.mp3") (1 2]
‘c:\\music\\ap\\mahadeva.mp3'

>>> ps.path.join("c:\\music\\ap", "mahadeva.mp3") (3]
‘c:\\music\\ap\\mahadeva.mp3'

>>> ps.path.expanduser("~") (4
‘c:\Documents and Settings\\mpilgrim\\My Documents'

>>> ps.path.join(os.path.expanduser("~"), "Python") (5

‘c:\\Documents and Settings\\mpilgrim\\My Documents\\Python'

o os.path is a reference to a module —— which module depends on your platform. Just as getpass
encapsulates differences between platforms by setting getpass to a platform-specific function, os
encapsulates differences between platforms by setting path to a platform—specific module.

(2]

Dive Into Python 74

http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/node6.html#SECTION006710000000000000000
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-sys.html

The join function of os.path constructs a pathname out of one or more partial pathnames. In this case, it
simply concatenates strings. (Note that dealing with pathnames on Windows is annoying because the backsle
character must be escaped.)

In this slightly less trivial case, join will add an extra backslash to the pathname before joining it to the
filename. | was overjoyed when | discovered this, since addSlashlfNecessary is one of the stupid little
functions | always need to write when building up my toolbox in a new language. Do not write this stupid little
function in Python; smart people have already taken care of it for you.

expanduser will expand a pathname that uses ~ to represent the current user's home directory. This works on

any platform where users have a home directory, like Windows, UNIX, and Mac OS X; it has no effect on Mac
OS.

Combining these techniques, you can easily construct pathnames for directories and files under the user's ho
directory.

Example 6.17. Splitting Pathnames

>>> ps.path.split("c:\\music\\ap\\mahadeva.mp3")

(‘c:\\music\\ap', 'mahadeva.mp3’)

>>> (filepath, filename) = os.path.split("c:\\music\\ap\\mahadeva.mp3")
>>> filepath

‘c:\\music\\ap'

>>> filename

‘mahadeva.mp3’

>>> (shortname, extension) = os.path.splitext(filename)

®© © o0 ©

>>> shorthame
'mahadeva’
>>> extension

" mp3'

@ © o ©

The split function splits a full pathname and returns a tuple containing the path and filename. Remember
when | said you could use multi-variable assignment to return multiple values from a function? Well, split
is such a function.

You assign the return value of the split function into a tuple of two variables. Each variable receives the
value of the corresponding element of the returned tuple.

The first variable, filepath, receives the value of the first element of the tuple returned from split, the file
path.

The second variable, filename, receives the value of the second element of the tuple returned from spilit,
the filename.

os.path also contains a function splitext, which splits a filename and returns a tuple containing the
filename and the file extension. You use the same technique to assign each of them to separate variables.

Example 6.18. Listing Directories

>>> os.listdir("c:\\music_singles\\") (1]
['a_time_long_forgotten_con.mp3', 'hellraiser.mp3',

'kairo.mp3', 'long_way_homel.mp3', 'sidewinder.mp3’,

'spinning.mp3']

>>> dirname = "c:\\"

>>> os.listdir(dirname) (2]
[AUTOEXEC.BAT', 'boot.ini', 'CONFIG.SYS', 'cygwin',

‘docbook’, 'Documents and Settings', 'Incoming’, ‘Inetpub’, '10.SYS/,
'MSDOS.SYS', 'Music', 'NTDETECT.COM', 'ntldr', 'pagefile.sys',

'Program Files', 'Python20', 'RECYCLER',

'System Volume Information', ' TEMP', '"WINNT]

>>> [f for f in os.listdir(dirname)

if os.path.isfile(os.path.join(dirname, f))] (3]

Dive Into Python 75

[AUTOEXEC.BAT', 'boot.ini"', 'CONFIG.SYS', '10.SYS', 'MSDOS.SYS',
'‘NTDETECT.COM', 'ntldr', '‘pagefile.sys']
>>> [f for f in os.listdir(dirname)

if os.path.isdir(os.path.join(dirname, f))] (4]
['cygwin', 'docbook’, 'Documents and Settings', 'Incoming’,
'Inetpub’, 'Music', 'Program Files', 'Python20', 'RECYCLER,
'System Volume Information’, TEMP', '"WINNT]

© The listdir function takes a pathname and returns a list of the contents of the directory.
@ |istdir returns both files and folders, with no indication of which is which.

® vYou can use list filtering and the isfile function of the os.path module to separate the files from
the folders. isfile takes a pathname and returns 1 if the path represents a file, and 0 otherwise. Here
you're using os.path.join to ensure a full pathname, but isfile also works with a partial path,
relative to the current working directory. You can use os.getcwd() to get the current working
directory.

4] os.path also has a isdir function which returns 1 if the path represents a directory, and 0
otherwise. You can use this to get a list of the subdirectories within a directory.

Example 6.19. Listing Directories in fileinfo.py

def listDirectory(directory, fileExtList):
"get list of file info objects for files of particular extensions"
fileList = [os.path.normcase(f)
for f in os.listdir(directory)] (12
fileList = [os.path.join(directory, f)
for fin fileList
if 0s.path.splitext(f)[1] in fileExtList] 006

o os.listdir(directory) returns a list of all the files and folders in directory.
(2]

Iterating through the list with f, you use os.path.normcase(f) to normalize the case

according to operating system defaults. normcase is a useful little function that compensates
for case—-insensitive operating systems that think that mahadeva.mp3 and mahadeva.MP3
are the same file. For instance, on Windows and Mac OS, normcase will convert the entire
filename to lowercase; on UNIX-compatible systems, it will return the filename unchanged.

© Iterating through the normalized list with f again, you use os.path.splitext(f) to split
each filename into name and extension.

© Foreachfile, you see if the extension is in the list of file extensions you care about
(fileExtList, which was passed to the listDirectory function).

® Foreachfile you care about, you use os.path.join(directory, f) to construct the
full pathname of the file, and return a list of the full pathnames.

Whenever possible, you should use the functions in os and os.path for file, directory, and path manipulations.
These modules are wrappers for platform—specific modules, so functions like os.path.split work on UNIX,
Windows, Mac OS, and any other platform supported by Python.

There is one other way to get the contents of a directory. It's very powerful, and it uses the sort of wildcards that yo
may already be familiar with from working on the command line.

Example 6.20. Listing Directories with glob

>>> os.listdir("c:\\music_singles\\") 1]
['a_time_long_forgotten_con.mp3', 'hellraiser.mp3',

'kairo.mp3', 'long_way_homel.mp3', 'sidewinder.mp3’,

'spinning.mp3']

Dive Into Python 76

>>> import glob

>>> glob.glob('c:\music_singles*.mp3') (2]
['c:\music_singles\\a_time_long_forgotten_con.mp3’,
‘c:\\music_singles\\hellraiser.mp3’,

‘c:\\music_singles\\kairo.mp3',
‘c:\\music_singles\\long_way_homel.mp3’,
‘c:\\music_singles\\sidewinder.mp3',

‘c:\\music_singles\\spinning.mp3]

>>> glob.glob(‘c:\\music_singles\\s*.mp3") (3]
['‘c:\\music_singles\\sidewinder.mp3’,

‘c:\\music_singles\\spinning.mp3']

>>> glob.glob('c:\music*. mp3') (4]

9 As you saw earlier, os.listdir simply takes a directory path and lists all files and directories in that
directory.

O The glob module, on the other hand, takes a wildcard and returns the full path of all files and
directories matching the wildcard. Here the wildcard is a directory path plus "*.mp3", which will match
all . mp3 files. Note that each element of the returned list already includes the full path of the file.

® you want to find all the files in a specific directory that start with "s" and end with ".mp3", you can
do that too.

@ Now consider this scenario: you have a music directory, with several subdirectories within it, with
.mp3 files within each subdirectory. You can get a list of all of those with a single call to glob, by
using two wildcards at once. One wildcard is the "*.mp3" (to match .mp3 files), and one wildcard is
within the directory path itself, to match any subdirectory within c:\music. That's a crazy amount of
power packed into one deceptively simple—looking function!

Further Reading on the os Module

« Python Knowledge Base (http://www.fagts.com/knowledge—-base/index.phtml/fid/199/) answers questions
about the os module (http://www.fagts.com/knowledge-base/index.phtml/fid/240).

« Python Library Reference (http://www.python.org/doc/current/lib/) documents the os
(http://mvww.python.org/doc/current/lib/module—os.html) module and the os.path
(http://www.python.org/doc/current/lib/module-os.path.html) module.

6.6. Putting It All Together

Once again, all the dominoes are in place. You've seen how each line of code works. Now let's step back and see |
it all fits together.

Example 6.21. listDirectory

def listDirectory(directory, fileExtList): (1]
"get list of file info objects for files of particular extensions"
fileList = [0s.path.normcase(f)
for f in os.listdir(directory)]
fileList = [os.path.join(directory, f)
for fin fileList
if os.path.splitext(f)[1] in fileExtList]
def getFilelnfoClass(filename, module=sys.modules[FileInfo.__module__]):
"get file info class from filename extension"
subclass = "%sFilelnfo" % os.path.splitext(filename)[1].upper()[1:]
return hasattr(module, subclass) and getattr(module, subclass) or FileInfo
return [getFilelnfoClass(f)(f) for f in fileList]

@00 o0

Dive Into Python 77

http://www.faqts.com/knowledge-base/index.phtml/fid/199/
http://www.faqts.com/knowledge-base/index.phtml/fid/240
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-os.html
http://www.python.org/doc/current/lib/module-os.path.html

listDirectory is the main attraction of this entire module. It takes a directory (like

c:\music_singles\ in my case) and a list of interesting file extensions (like [.mp37), and it returns

a list of class instances that act like dictionaries that contain metadata about each interesting file in that
directory. And it does it in just a few straightforward lines of code.

® As you saw in the previous section, this line of code gets a list of the full pathnames of all the files in
directory that have an interesting file extension (as specified by fileExtList).

® 0ld-school Pascal programmers may be familiar with them, but most people give me a blank stare when | tell
them that Python supports nested functions —— literally, a function within a function. The nested function
getFilelnfoClass can be called only from the function in which it is defined, listDirectory. As
with any other function, you don't need an interface declaration or anything fancy; just define the function and
code it.

® Nowthat you've seen the os module, this line should make more sense. It gets the extension of the file
(os.path.splitext(filename)[1]), forces it to uppercase (.upper()), slices off the dot ([1:]),
and constructs a class name out of it with string formatting. So c:\music\ap\mahadeva.mp3 becomes
.mp3 becomes .MP3 becomes MP3 becomes MP3Filelnfo.

15/ Having constructed the name of the handler class that would handle this file, you check to see if that handler
class actually exists in this module. If it does, you return the class, otherwise you return the base class
FileInfo. This is a very important point: this function returns a class. Not an instance of a class, but the
class itself.

® For each file in the "interesting files" list (fileList), you call getFileInfoClass with the filename (f).
Calling getFileinfoClass(f) returns a class; you don't know exactly which class, but you don't care.
You then create an instance of this class (whatever it is) and pass the filename (f again), to the __init__
method. As you saw earlier in this chapter, the __init__ method of Filelnfo sets self["name"],
which triggers __setitem__, which is overridden in the descendant (MP3FileInfo) to parse the file
appropriately to pull out the file's metadata. You do all that for each interesting file and return a list of the
resulting instances.
Note that listDirectory is completely generic. It doesn't know ahead of time which types of files it will be
getting, or which classes are defined that could potentially handle those files. It inspects the directory for the files to
process, and then introspects its own module to see what special handler classes (like MP3FileInfo) are defined.
You can extend this program to handle other types of files simply by defining an appropriately—-named class:
HTMLFilelnfo for HTML files, DOCFilelnfo for Word .doc files, and so forth. listDirectory will
handle them all, without modification, by handing off the real work to the appropriate classes and collating the resul

6.7. Summary

The fileinfo.py program introduced in Chapter 5 should now make perfect sense.

"""Framework for getting filetype—specific metadata.

Instantiate appropriate class with filename. Returned object acts like a
dictionary, with key—-value pairs for each piece of metadata.

import fileinfo

info = fileinfo.MP3FileInfo("/music/ap/mahadeva.mp3")

print "\n".join(["%s=%s" % (k, v) for k, v in info.items()])

Or use listDirectory function to get info on all files in a directory.

for info in fileinfo.listDirectory("/music/ap/", [".mp3"]):

Framework can be extended by adding classes for particular file types, e.qg.
HTMLFilelnfo, MPGFilelnfo, DOCFilelnfo. Each class is completely responsible for
parsing its files appropriately; see MP3FileInfo for example.

import 0s

Dive Into Python 78

import sys
from UserDict import UserDict

def stripnulls(data):
"strip whitespace and nulls"
return data.replace("\00", ").strip()

class FileInfo(UserDict):
"store file metadata"
def __init__(self, filename=None):
UserDict.__init__(self)
self["name"] = filename

class MP3Filelnfo(Filelnfo):

"store ID3v1.0 MP3 tags"

tagDataMap = {"title" : (3, 33, stripnulls),
"artist” : (33, 63, stripnulls),
"album" : (63, 93, stripnulls),
"year" (93, 97, stripnulls),
"comment" : (97, 126, stripnulls),
"genre" : (127, 128, ord)}

def __ parse(self, filename):
"parse ID3v1.0 tags from MP3 file"
self.clear()
try:
fsock = open(filename, "rb", 0)
try:
fsock.seek(-128, 2)
tagdata = fsock.read(128)
finally:
fsock.close()
if tagdata[:3] == "TAG":
for tag, (start, end, parseFunc) in self.tagDataMap.items():
self[tag] = parseFunc(tagdata[start:end])
except IOError:
pass

def __setitem__(self, key, item):
if key == "name" and item:
self.__parse(item)
FileInfo.__setitem__ (self, key, item)

def listDirectory(directory, fileExtList):
"get list of file info objects for files of particular extensions"
fileList = [os.path.normcase(f)
for f in os.listdir(directory)]
fileList = [0s.path.join(directory, f)
for fin fileList
if os.path.splitext(f)[1] in fileExtList]
def getFilelnfoClass(filename, module=sys.modules[FileInfo.__module__]):
"get file info class from filename extension"
subclass = "%sFilelnfo" % os.path.splitext(filename)[1].upper()[1:]
return hasattr(module, subclass) and getattr(module, subclass) or Fileinfo
return [getFilelnfoClass(f)(f) for f in fileList]
if _name__=="_ main__":
for info in listDirectory("/music/_singles/", [*.mp3"]):
print "\n".join(["%s=%s" % (k, v) for k, v in info.items()])
print

Before diving into the next chapter, make sure you're comfortable doing the following things:

Dive Into Python

79

« Catching exceptions with try...except

 Protecting external resources with try...finally

* Reading from files

« Assigning multiple values at once in a for loop

« Using the os module for all your cross—platform file manipulation needs

« Dynamically instantiating classes of unknown type by treating classes as objects and passing them around

Dive Into Python 80

Chapter 7. Regular Expressions

Regular expressions are a powerful and standardized way of searching, replacing, and parsing text with complex
patterns of characters. If you've used regular expressions in other languages (like Perl), the syntax will be very
familiar, and you get by just reading the summary of the re module
(http://mvww.python.org/doc/current/lib/module-re.html) to get an overview of the available functions and their
arguments.

7.1. Diving In

Strings have methods for searching (index, find, and count), replacing (replace), and parsing (split), but

they are limited to the simplest of cases. The search methods look for a single, hard—coded substring, and they are
always case—sensitive. To do case—-insensitive searches of a string s, you must call s.lower() or s.upper() and
make sure your search strings are the appropriate case to match. The replace and split methods have the same
limitations.

If what you're trying to do can be accomplished with string functions, you should use them. They're fast and simple
and easy to read, and there's a lot to be said for fast, simple, readable code. But if you find yourself using a lot of
different string functions with if statements to handle special cases, or if you're combining them with split and

join and list comprehensions in weird unreadable ways, you may need to move up to regular expressions.

Although the regular expression syntax is tight and unlike normal code, the result can end up being more readable
than a hand-rolled solution that uses a long chain of string functions. There are even ways of embedding comment
within regular expressions to make them practically self-documenting.

7.2. Case Study: Street Addresses

This series of examples was inspired by a real-life problem | had in my day job several years ago, when | needed t
scrub and standardize street addresses exported from a legacy system before importing them into a newer system.
(See, | don't just make this stuff up; it's actually useful.) This example shows how | approached the problem.

Example 7.1. Matching at the End of a String

>>> s = '100 NORTH MAIN ROAD'
>>> s.replace('ROAD', 'RD.")

100 NORTH MAIN RD."

>>> s ='100 NORTH BROAD ROAD'
>>> s.replace('ROAD’, 'RD.")

100 NORTH BRD. RD."

>>> g[:-4] + s[-4:].replace('ROAD’, 'RD.")
100 NORTH BROAD RD.'

>>> import re

>>> re.sub('ROAD$', 'RD., s)

100 NORTH BROAD RD.'

@0 ® ©

(6]

o My goal is to standardize a street address so that 'ROAD' is always abbreviated as 'RD.". At first glance, |
thought this was simple enough that | could just use the string method replace. After all, all the data was
already uppercase, so case mismatches would not be a problem. And the search string, 'ROAD’, was a
constant. And in this deceptively simple example, s.replace does indeed work.

O |ife, unfortunately, is full of counterexamples, and | quickly discovered this one. The problem here is that
'ROAD' appears twice in the address, once as part of the street name 'BROAD' and once as its own word. Th

Dive Into Python 81

http://www.python.org/doc/current/lib/module-re.html

replace method sees these two occurrences and blindly replaces both of them; meanwhile, | see my
addresses getting destroyed.

® Tosolve the problem of addresses with more than one 'ROAD' substring, you could resort to something like
this: only search and replace 'ROAD' in the last four characters of the address (s[-4:]), and leave the string
alone (s[:—4]). But you can see that this is already getting unwieldy. For example, the pattern is dependent
on the length of the string you're replacing (if you were replacing 'STREET" with 'ST.", you would need to
use s[:—6] and s[-6:].replace(...)). Would you like to come back in six months and debug this? |
know | wouldn't.

@ it's time to move up to regular expressions. In Python, all functionality related to regular expressions is
contained in the re module.

©® Take alook at the first parameter: 'ROADS$'. This is a simple regular expression that matches 'ROAD' only
when it occurs at the end of a string. The $ means "end of the string”. (There is a corresponding character, th
caret ©, which means "beginning of the string".)

16/ Using the re.sub function, you search the string s for the regular expression 'ROADS$' and replace it with
'RD.". This matches the ROAD at the end of the string s, but does not match the ROAD that's part of the word
BROAD, because that's in the middle of s.
Continuing with my story of scrubbing addresses, | soon discovered that the previous example, matching 'ROAD' at
the end of the address, was not good enough, because not all addresses included a street designation at all; some
ended with the street name. Most of the time, | got away with it, but if the street name was 'BROAD", then the regul:
expression would match 'ROAD' at the end of the string as part of the word 'BROAD', which is not what | wanted.

Example 7.2. Matching Whole Words

>>> s = '100 BROAD'
>>> re.sub('ROAD$', 'RD.", s)

100 BRD.'

>>> re.sub("\\bROAD$', 'RD.', s) (1)
'100 BROAD'

>>> re.sub(r\bROADS$', 'RD., s) (2]
'100 BROAD'

>>> s ="'100 BROAD ROAD APT. 3

>>> re.sub(r'\bROADS$', 'RD., s) (3]
'100 BROAD ROAD APT. 3'

>>> re.sub(r'\bROAD\b', 'RD.", s) (4

100 BROAD RD. APT 3'

® what | really wanted was to match 'ROAD’ when it was at the end of the string and it was its own
whole word, not a part of some larger word. To express this in a regular expression, you use \b, which
means "a word boundary must occur right here". In Python, this is complicated by the fact that the '\
character in a string must itself be escaped. This is sometimes referred to as the backslash plague, and it
is one reason why regular expressions are easier in Perl than in Python. On the down side, Perl mixes
regular expressions with other syntax, so if you have a bug, it may be hard to tell whether it's a bug in
syntax or a bug in your regular expression.

® 7o work around the backslash plague, you can use what is called a raw string, by prefixing the string
with the letter r. This tells Python that nothing in this string should be escaped; \t' is a tab character,
but r'\t' is really the backslash character \ followed by the letter t. | recommend always using raw
strings when dealing with regular expressions; otherwise, things get too confusing too quickly (and
regular expressions get confusing quickly enough all by themselves).

o *sigh* Unfortunately, | soon found more cases that contradicted my logic. In this case, the street
address contained the word 'ROAD' as a whole word by itself, but it wasn't at the end, because the
address had an apartment number after the street designation. Because 'ROAD' isn't at the very end of

Dive Into Python 82

the string, it doesn't match, so the entire call to re.sub ends up replacing nothing at all, and you get
the original string back, which is not what you want.

@ 7o solve this problem, | removed the $ character and added another \b. Now the regular expression
reads "match 'ROAD' when it's a whole word by itself anywhere in the string,” whether at the end, the
beginning, or somewhere in the middle.

7.3. Case Study: Roman Numerals

You've most likely seen Roman numerals, even if you didn't recognize them. You may have seen them in copyright
of old movies and television shows ("Copyright MCMXLVI" instead of "Copyright 1946"), or on the dedication walls

of libraries or universities ("established MDCCCLXXXVIII" instead of "established 1888"). You may also have seen

them in outlines and bibliographical references. It's a system of representing numbers that really does date back to
ancient Roman empire (hence the name).

In Roman numerals, there are seven characters that are repeated and combined in various ways to represent numt

el=1
V=5

* X=10
*L=50

+ C=100
D =500
* M =1000

The following are some general rules for constructing Roman numerals:

» Characters are additive. | is 1, Il is 2, and Il is 3. VI is 6 (literally, "5 and 1"), VIl is 7, and VIl is 8.

» The tens characters (I, X, C, and M) can be repeated up to three times. At 4, you need to subtract from the r
highest fives character. You can't represent 4 as llll; instead, it is represented as IV ("1 less than 5"). The
number 40 is written as XL (10 less than 50), 41 as XLI, 42 as XLII, 43 as XLIIl, and then 44 as XLIV
(10 less than 50, then 1 less than 5).

 Similarly, at 9, you need to subtract from the next highest tens character: 8 is VIII, but 9 is IX (1 less than
10), not VIIII (since the | character can not be repeated four times). The number 90 is XC, 900 is CM.

» The fives characters can not be repeated. The number 10 is always represented as X, never as VV. The nui
100 is always C, never LL.

* Roman numerals are always written highest to lowest, and read left to right, so the order the of characters
matters very much. DC is 600; CD is a completely different number (400, 100 less than 500). Cl is 101;

IC is not even a valid Roman numeral (because you can't subtract 1 directly from 100; you would need to
write it as XCIX, for 10 less than 100, then 1 less than 10).

7.3.1. Checking for Thousands

What would it take to validate that an arbitrary string is a valid Roman numeral? Let's take it one digit at a time. Sinc
Roman numerals are always written highest to lowest, let's start with the highest: the thousands place. For numbers
1000 and higher, the thousands are represented by a series of M characters.

Example 7.3. Checking for Thousands

>>> import re

>>> pattern = "*"M?M?M?$' (1]
>>> re.search(pattern, 'M") (2]
<SRE_Match object at 0106FB58>

Dive Into Python 83

>>> re.search(pattern, 'MM")
<SRE_Match object at 0106C290>
>>> re.search(pattern, 'MMM’)
<SRE_Match object at 0106AA38>
>>> re.search(pattern, ' MMMM’)
>>> re.search(pattern, ")

@0 © ©

<SRE_Match object at 0106F4A8>

@00

6]

This pattern has three parts:

N to match what follows only at the beginning of the string. If this were not specified, the pattern
would match no matter where the M characters were, which is not what you want. You want to
make sure that the M characters, if they're there, are at the beginning of the string.

» M? to optionally match a single M character. Since this is repeated three times, you're matching
anywhere from zero to three M characters in a row.

» $ to match what precedes only at the end of the string. When combined with the ” character at
the beginning, this means that the pattern must match the entire string, with no other characters
before or after the M characters.

The essence of the re module is the search function, that takes a regular expression (pattern) and a
string (‘M) to try to match against the regular expression. If a match is found, search returns an

object which has various methods to describe the match; if no match is found, search returns None,
the Python null value. All you care about at the moment is whether the pattern matches, which you can
tell by just looking at the return value of search. 'M' matches this regular expression, because the first
optional M matches and the second and third optional M characters are ignored.

'"MM' matches because the first and second optional M characters match and the third M is ignored.
'MMM' matches because all three M characters match.

'MMMM' does not match. All three M characters match, but then the regular expression insists on the
string ending (because of the $ character), and the string doesn't end yet (because of the fourth M). So
search returns None.

Interestingly, an empty string also matches this regular expression, since all the M characters are optional.

7.3.2. Checking for Hundreds

The hundreds place is more difficult than the thousands, because there are several mutually exclusive ways it coulc
expressed, depending on its value.

«100=C
*«200=CC

» 300 = CCC
*400=CD
*500=D

* 600 =DC

* 700 = DCC

» 800 = DCCC
*900=CM

So there are four possible patterns:

*CM

*«CD

« Zero to three C characters (zero if the hundreds place is 0)
« D, followed by zero to three C characters

Dive Into Python 84

The last two patterns can be combined:

 an optional D, followed by zero to three C characters

This example shows how to validate the hundreds place of a Roman numeral.

Example 7.4. Checking for Hundreds

>>> import re

>>> pattern = "M?M?M?(CM|CD|D?C?C?C?)$'
>>> re.search(pattern, 'MCM’)

<SRE_Match object at 01070390>

>>> re.search(pattern, 'MD’)

<SRE_Match object at 01073A50>

>>> re.search(pattern, ' MMMCCC')
<SRE_Match object at 010748A8>

>>> re.search(pattern, 'MCMC')

>>> re.search(pattern, ")

@0 © ® ©Oe

<SRE_Match object at 01071D98>

6]

This pattern starts out the same as the previous one, checking for the beginning of the string ("), then the
thousands place (M?M?M?). Then it has the new part, in parentheses, which defines a set of three mutually
exclusive patterns, separated by vertical bars: CM, CD, and D?C?C?C? (which is an optional D followed by z
to three optional C characters). The regular expression parser checks for each of these patterns in order (fron
left to right), takes the first one that matches, and ignores the rest.

'MCM' matches because the first M matches, the second and third M characters are ignored, and the CM mat
(so the CD and D?C?C?C? patterns are never even considered). MCM is the Roman numeral representation
1900.

'MD' matches because the first M matches, the second and third M characters are ignored, and the D?C?C?C
pattern matches D (each of the three C characters are optional and are ignored). MD is the Roman numeral
representation of 1500.

'MMMCCC' matches because all three M characters match, and the D?C?C?C? pattern matches CCC (the D
optional and is ignored). MMMCCC is the Roman numeral representation of 3300.

'MCMC' does not match. The first M matches, the second and third M characters are ignored, and the CM
matches, but then the $ does not match because you're not at the end of the string yet (you still have an
unmatched C character). The C does not match as part of the D?C?C?C? pattern, because the mutually
exclusive CM pattern has already matched.

Interestingly, an empty string still matches this pattern, because all the M characters are optional and ignored
and the empty string matches the D?C?C?C? pattern where all the characters are optional and ignored.

Whew! See how quickly regular expressions can get nasty? And you've only covered the thousands and hundreds
places of Roman numerals. But if you followed all that, the tens and ones places are easy, because they're exactly
same pattern. But let's look at another way to express the pattern.

7.4. Using the {n,m} Syntax

In the previous section, you were dealing with a pattern where the same character could be repeated up to three tin
There is another way to express this in regular expressions, which some people find more readable. First look at th
method we already used in the previous example.

Example 7.5. The Old Way: Every Character Optional

Dive Into Python 85

>>> import re

>>> pattern = "M?M?M?$'

>>> re.search(pattern, 'M’) (1]
<_sre.SRE_Match object at 0OxO08EE090>
>>> pattern = "M?M?M?$'

>>> re.search(pattern, 'MM') (2]
< _sre.SRE_Match object at OXOOBEEB48>
>>> pattern = "M?M?M?$'

>>> re.search(pattern, 'MMM') (3]
<_sre.SRE_Match object at OXOO8BEE090>

>>> re.search(pattern, 'MMMM")
>>>

This matches the start of the string, and then the first optional M, but not the second and third M (but that's ok
because they're optional), and then the end of the string.

This matches the start of the string, and then the first and second optional M, but not the third M (but that's ok
because it's optional), and then the end of the string.

This matches the start of the string, and then all three optional M, and then the end of the string.

This matches the start of the string, and then all three optional M, but then does not match the the end of the
string (because there is still one unmatched M), so the pattern does not match and returns None.

e © ©

Example 7.6. The New Way: Fromnom

>>> pattern = "*"M{0,3}$'
>>> re.search(pattern, 'M")
<_sre.SRE_Match object at OXOOBEEB48>
>>> re.search(pattern, 'MM') (3]
<_sre.SRE_Match object at OXOO8BEE090>
>>> re.search(pattern, ' MMM")
<_sre.SRE_Match object at OXOOBEEDA8>

>>> re.search(pattern, 'MMMM")
>>>

oe

(]

Q This pattern says: "Match the start of the string, then anywhere from zero to three M characters, then the end
the string." The 0 and 3 can be any numbers; if you want to match at least one but no more than three M
characters, you could say M{1,3}.

This matches the start of the string, then one M out of a possible three, then the end of the string.
This matches the start of the string, then two M out of a possible three, then the end of the string.
This matches the start of the string, then three M out of a possible three, then the end of the string.

This matches the start of the string, then three M out of a possible three, but then does not match the end of t
string. The regular expression allows for up to only three M characters before the end of the string, but you ha
four, so the pattern does not match and returns None.

@00 0®

There is no way to progransmatically determine that two regular expressions are equivalent. The best you can do is
write a lot of test cases to make sure they behave the same way on all relevant inputs. You'll talk more about writin
test cases later in this book.

7.4.1. Checking for Tens and Ones
Now let's expand the Roman numeral regular expression to cover the tens and ones place. This example shows the

check for tens.

Example 7.7. Checking for Tens

Dive Into Python 86

>>> pattern = *"M?M?M?M?(CM|CD|D?C?C?C?)(XC|XL|L?X?X?X?)$'
>>> re.search(pattern, 'MCMXL'")
<_sre.SRE_Match object at OXOOBEEB48>

>>> re.search(pattern, 'MCML") (2]
<_sre.SRE_Match object at 0XO08EEB48>

>>> re.search(pattern, "MCMLX') (3]
<_sre.SRE_Match object at 0XO08EEB48>

>>> re.search(pattern, 'MCMLXXX') (4]
<_sre.SRE_Match object at 0XO08EEB48>

>>> re.search(pattern, 'MCMLXXXX") (5]
>>>

@ This matches the start of the string, then the first optional M, then CM, then XL, then the end of the string.
Remember, the (A|B|C) syntax means "match exactly one of A, B, or C". You match XL, so you ignore the
XC and L?X?X?X? choices, and then move on to the end of the string. MCML is the Roman numeral
representation of 1940.

® This matches the start of the string, then the first optional M, then CM, then L?X?X?X?. Of the L?X?X?X?, it
matches the L and skips all three optional X characters. Then you move to the end of the string. MCML is the
Roman numeral representation of 1950.

® This matches the start of the string, then the first optional M, then CM, then the optional L and the first optione
X, skips the second and third optional X, then the end of the string. MCMLX is the Roman numeral represente
of 1960.

® This matches the start of the string, then the first optional M, then CM, then the optional L and all three option
X characters, then the end of the string. MCMLXXX is the Roman numeral representation of 1980.

© This matches the start of the string, then the first optional M, then CM, then the optional L and all three option
X characters, then fails to match the end of the string because there is still one more X unaccounted for. So tt
entire pattern fails to match, and returns None. MCMLXXXX is not a valid Roman numeral.

The expression for the ones place follows the same pattern. I'll spare you the details and show you the end result.
>>> pattern = ""M?M?M?M?(CM|CD|D?C?C?C?)(XC|XL|L?X?X?X?)(IX|IV|V?1?1?12)$'

So what does that look like using this alternate {n,m} syntax? This example shows the new syntax.

Example 7.8. Validating Roman Numerals with {n,m}

>>> pattern = "*M{0,4}(CM|CD|D?C{0,3})(XC|XL|L?X{0,3})(IX|IV|V?I{0,3})$'
>>> re.search(pattern, 'MDLV")
<_sre.SRE_Match object at OXOOBEEB48>

>>> re.search(pattern, 'MMDCLXVI') (2]
<_sre.SRE_Match object at OXOOBEEB48>
>>> re.search(pattern, MMMMDCCCLXXXVIII') (3]
<_sre.SRE_Match object at OXOOBEEB48>
>>> re.search(pattern, 'I') (4]

<_sre.SRE_Match object at OXOOBEEB48>

© This matches the start of the string, then one of a possible four M characters, then D?C{0,3}. Of that, it
matches the optional D and zero of three possible C characters. Moving on, it matches L?X{0,3} by matching
the optional L and zero of three possible X characters. Then it matches V?1{0,3} by matching the optional V
and zero of three possible | characters, and finally the end of the string. MDLV is the Roman numeral
representation of 1555.

® This matches the start of the string, then two of a possible four M characters, then the D?C{0,3} with a D and
one of three possible C characters; then L?X{0,3} with an L and one of three possible X characters; then
V?I1{0,3} with a VV and one of three possible | characters; then the end of the string. MMDCLXVI is the

Dive Into Python 87

Roman numeral representation of 2666.

® This matches the start of the string, then four out of four M characters, then D?C{0,3} with a D and three out
of three C characters; then L?X{0,3} with an L and three out of three X characters; then V?1{0,3} with a V
and three out of three | characters; then the end of the string. MMMMDCCCLXXXVIII is the Roman numeral
representation of 3888, and it's the longest Roman numeral you can write without extended syntax.

® watch closely. (I feel like a magician. "Watch closely, kids, I'm going to pull a rabbit out of my hat.") This
matches the start of the string, then zero out of four M, then matches D?C{0,3} by skipping the optional D and
matching zero out of three C, then matches L?X{0,3} by skipping the optional L and matching zero out of
three X, then matches V?1{0,3} by skipping the optional V and matching one out of three I. Then the end of
the string. Whoa.

If you followed all that and understood it on the first try, you're doing better than I did. Now imagine trying to

understand someone else's regular expressions, in the middle of a critical function of a large program. Or even

imagine coming back to your own regular expressions a few months later. I've done it, and it's not a pretty sight.

In the next section you'll explore an alternate syntax that can help keep your expressions maintainable.

7.5. Verbose Regular Expressions

So far you've just been dealing with what I'll call "compact" regular expressions. As you've seen, they are difficult to
read, and even if you figure out what one does, that's no guarantee that you'll be able to understand it six months Iz
What you really need is inline documentation.

Python allows you to do this with something called verbose regular expressions. A verbose regular expression is
different from a compact regular expression in two ways:

» Whitespace is ignored. Spaces, tabs, and carriage returns are not matched as spaces, tabs, and carriage re
They're not matched at all. (If you want to match a space in a verbose regular expression, you'll need to esc
it by putting a backslash in front of it.)

« Comments are ignored. A comment in a verbose regular expression is just like a comment in Python code: i
starts with a # character and goes until the end of the line. In this case it's a comment within a multi-line
string instead of within your source code, but it works the same way.

This will be more clear with an example. Let's revisit the compact regular expression you've been working with, and

make it a verbose regular expression. This example shows how.

Example 7.9. Regular Expressions with Inline Comments

>>> pattern = "

A # beginning of string

M{0,4} # thousands — 0to 4 M's

(CM|CD|D?C{0,3}) # hundreds — 900 (CM), 400 (CD), 0-300 (0 to 3 C's),
or 500-800 (D, followed by 0 to 3 C's)

(XC|XL|L?X{0,3}) #tens — 90 (XC), 40 (XL), 0-30 (0 to 3 X's),
or 50-80 (L, followed by 0 to 3 X's)
(IX[IVIV?K{0,3}) # ones -9 (IX), 4 (IV), 0-3 (0 to 3 I's),
or 5-8 (V, followed by 0 to 3 I's)

$ # end of string
>>> re.search(pattern, 'M', re.VERBOSE) (1]
<_sre.SRE_Match object at OXOOBEEB48>
>>> re.search(pattern, 'MCMLXXXIX', re. VERBOSE) (2]
<_sre.SRE_Match object at 0XO08EEB48>
>>> re.search(pattern, MMMMDCCCLXXXVIII', re. VERBOSE) (3]

Dive Into Python 88

<_sre.SRE_Match object at OXOOSBEEB48>
>>> re.search(pattern, 'M") (4]

Q® The most important thing to remember when using verbose regular expressions is that you need to pass
an extra argument when working with them: re. VERBOSE is a constant defined in the re module that
signals that the pattern should be treated as a verbose regular expression. As you can see, this pattern
has quite a bit of whitespace (all of which is ignored), and several comments (all of which are ignored).
Once you ignore the whitespace and the comments, this is exactly the same regular expression as you
saw in the previous section, but it's a lot more readable.

® This matches the start of the string, then one of a possible four M, then CM, then L and three of a possible
three X, then IX, then the end of the string.

® This matches the start of the string, then four of a possible four M, then D and three of a possible three C,
then L and three of a possible three X, then V and three of a possible three I, then the end of the string.

@ This does not match. Why? Because it doesn't have the re.VERBOSE flag, so the re.search
function is treating the pattern as a compact regular expression, with significant whitespace and literal
hash marks. Python can't auto—detect whether a regular expression is verbose or not. Python assumes
every regular expression is compact unless you explicitly state that it is verbose.

7.6. Case study: Parsing Phone Numbers

So far you've concentrated on matching whole patterns. Either the pattern matches, or it doesn't. But regular
expressions are much more powerful than that. When a regular expression does match, you can pick out specific
pieces of it. You can find out what matched where.

This example came from another real-world problem | encountered, again from a previous day job. The problem:
parsing an American phone number. The client wanted to be able to enter the number free—form (in a single field), |
then wanted to store the area code, trunk, number, and optionally an extension separately in the company's databa
scoured the Web and found many examples of regular expressions that purported to do this, but none of them were
permissive enough.

Here are the phone numbers | needed to be able to accept:

« 800-555-1212

« 800 555 1212

« 800.555.1212

« (800) 555-1212

« 1-800-555-1212

« 800-555-1212-1234

« 800-555-1212x1234

« 800-555-1212 ext. 1234

« work 1-(800) 555.1212 #1234

Quite a variety! In each of these cases, | need to know that the area code was 800, the trunk was 555, and the rest
the phone number was 1212. For those with an extension, | need to know that the extension was 1234.

Let's work through developing a solution for phone number parsing. This example shows the first step.

Example 7.10. Finding Numbers

>>> phonePattern = re.compile(r*(\d{3})-(\d{3})-(\d{4})$")
>>> phonePattern.search('800-555-1212").groups()
('800', '555', '1212")

®©e

Dive Into Python 89

>>> phonePattern.search('800-555-1212-1234") (3]

>>>

(3]

Always read regular expressions from left to right. This one matches the beginning of the string, and then
(\d{3}). What's \d{3}? Well, the {3} means "match exactly three numeric digits"; it's a variation on

the {n,m} syntax you saw earlier. \d means "any numeric digit" (O through 9). Putting it in

parentheses means "match exactly three numeric digits, and then remember them as a group that | can
ask for later". Then match a literal hyphen. Then match another group of exactly three digits. Then
another literal hyphen. Then another group of exactly four digits. Then match the end of the string.

To get access to the groups that the regular expression parser remembered along the way, use the
groups() method on the object that the search function returns. It will return a tuple of however

many groups were defined in the regular expression. In this case, you defined three groups, one with
three digits, one with three digits, and one with four digits.

This regular expression is not the final answer, because it doesn't handle a phone number with an
extension on the end. For that, you'll need to expand the regular expression.

Example 7.11. Finding the Extension

>>> phonePattern = re.compile(r’*(\d{3})-(\d{3})-(\d{4})-(\d+)$")
>>> phonePattern.search('‘800-555-1212-1234").groups()
('800', '555', '1212', '1234")

>>> phonePattern.search('800 555 1212 1234')

>>>

>>> phonePattern.search('800-555-1212")

>>>

o ® o0

This regular expression is almost identical to the previous one. Just as before, you match the beginning
of the string, then a remembered group of three digits, then a hyphen, then a remembered group of three
digits, then a hyphen, then a remembered group of four digits. What's new is that you then match
another hyphen, and a remembered group of one or more digits, then the end of the string.

The groups() method now returns a tuple of four elements, since the regular expression now defines
four groups to remember.

Unfortunately, this regular expression is not the final answer either, because it assumes that the different
parts of the phone number are separated by hyphens. What if they're separated by spaces, or commas, or
dots? You need a more general solution to match several different types of separators.

Oops! Not only does this regular expression not do everything you want, it's actually a step backwards,
because now you can't parse phone numbers without an extension. That's not what you wanted at all; if
the extension is there, you want to know what it is, but if it's not there, you still want to know what the
different parts of the main number are.

The next example shows the regular expression to handle separators between the different parts of the phone num

Example 7.12. Handling Different Separators

>>> phonePattern = re.compile(r"(\d{3})\D+(\d{3})\D+(\d{4})\D+(\d+)$")
>>> phonePattern.search('800 555 1212 1234").groups()

('800', '555', '1212', '1234")

>>> phonePattern.search('‘800-555-1212-1234").groups()

('800', '555', '1212', '1234")

>>> phonePattern.search('80055512121234")

>>>

>>> phonePattern.search('800-555-1212")

>>>

®© © ®© o9

Dive Into Python 90

(2]
(3
4
4

Hang on to your hat. You're matching the beginning of the string, then a group of three digits, then \D+.
What the heck is that? Well, \D matches any character except a humeric digit, and + means "1 or more".
So \D+ matches one or more characters that are not digits. This is what you're using instead of a literal
hyphen, to try to match different separators.

Using \D+ instead of — means you can now match phone numbers where the parts are separated by
spaces instead of hyphens.

Of course, phone numbers separated by hyphens still work too.

Unfortunately, this is still not the final answer, because it assumes that there is a separator at all. What if
the phone number is entered without any spaces or hyphens at all?

Oops! This still hasn't fixed the problem of requiring extensions. Now you have two problems, but you
can solve both of them with the same technique.

The next example shows the regular expression for handling phone numbers without separators.

Example 7.13. Handling Numbers Without Separators

>>> phonePattern = re.compile(r'*(\d{3})\D*(\d{3})\D*(\d{4})\D*(\d*)$")
>>> phonePattern.search('80055512121234").groups()

('800', '555', '1212', '1234")

>>> phonePattern.search('800.555.1212 x1234").groups()

('800', '555', '1212', '1234")

>>> phonePattern.search('800-555-1212").groups()

('800', '555', '1212', ")

>>> phonePattern.search('(800)5551212 x1234")

>>>

(-]

© © ®© o9

The only change you've made since that last step is changing all the + to *. Instead of \D+ between the parts
the phone number, you now match on \D*. Remember that + means "1 or more"? Well, * means "zero or
more". So now you should be able to parse phone numbers even when there is no separator character at all.

Lo and behold, it actually works. Why? You matched the beginning of the string, then a remembered group of
three digits (800), then zero non—numeric characters, then a remembered group of three digits (555), then zel
non—-numeric characters, then a remembered group of four digits (1212), then zero non—numeric characters,
then a remembered group of an arbitrary number of digits (1234), then the end of the string.

Other variations work now too: dots instead of hyphens, and both a space and an x before the extension.

Finally, you've solved the other long—standing problem: extensions are optional again. If no extension is founc
the groups() method still returns a tuple of four elements, but the fourth element is just an empty string.

| hate to be the bearer of bad news, but you're not finished yet. What's the problem here? There's an extra
character before the area code, but the regular expression assumes that the area code is the first thing at the
beginning of the string. No problem, you can use the same technique of "zero or more non—numeric charactel
to skip over the leading characters before the area code.

The next example shows how to handle leading characters in phone numbers.

Example 7.14. Handling Leading Characters

>>> phonePattern = re.compile(r\D*(\d{3})\D*(\d{3})\D*(\d{4})\D*(\d*)$")
>>> phonePattern.search('(800)5551212 ext. 1234").groups()

('800', '555', '1212', '1234")

>>> phonePattern.search('800-555-1212").groups()

('800', '555', '1212", ")

>>> phonePattern.search('work 1-(800) 555.1212 #1234")

>>>

© ® o

Dive Into Python 91

(4]

This is the same as in the previous example, except now you're matching \D*, zero or more hon—numeric
characters, before the first remembered group (the area code). Notice that you're not remembering these
non—-numeric characters (they're not in parentheses). If you find them, you'll just skip over them and then start
remembering the area code whenever you get to it.

You can successfully parse the phone number, even with the leading left parenthesis before the area code. (1
right parenthesis after the area code is already handled; it's treated as a non—numeric separator and matched
the \D* after the first remembered group.)

Just a sanity check to make sure you haven't broken anything that used to work. Since the leading characters
entirely optional, this matches the beginning of the string, then zero non—numeric characters, then a
remembered group of three digits (800), then one non—numeric character (the hyphen), then a remembered
group of three digits (555), then one non—numeric character (the hyphen), then a remembered group of four
digits (1212), then zero non—numeric characters, then a remembered group of zero digits, then the end of the
string.

This is where regular expressions make me want to gouge my eyes out with a blunt object. Why doesn't this
phone number match? Because there's a 1 before the area code, but you assumed that all the leading charac
before the area code were non—numeric characters (\D*). Aargh.

Let's back up for a second. So far the regular expressions have all matched from the beginning of the string. But no
you see that there may be an indeterminate amount of stuff at the beginning of the string that you want to ignore.
Rather than trying to match it all just so you can skip over it, let's take a different approach: don't explicitly match th
beginning of the string at all. This approach is shown in the next example.

Example 7.15. Phone Number, Wherever | May Find Ye

>>> phonePattern = re.compile(r'(\d{3})\D*(\d{3})\D*(\d{4})\D*(\d*)$")
>>> phonePattern.search('work 1-(800) 555.1212 #1234").groups()
('800', '555', '1212', '1234")

>>> phonePattern.search('800-555-1212")

('800', '555', '1212', ")

>>> phonePattern.search('80055512121234")

e @ 09

(800", '555', '1212', '1234")

(2]

(3]
(4]

Note the lack of in this regular expression. You are not matching the beginning of the string anymore. There
nothing that says you need to match the entire input with your regular expression. The regular expression
engine will do the hard work of figuring out where the input string starts to match, and go from there.

Now you can successfully parse a phone number that includes leading characters and a leading digit, plus an
number of any kind of separators around each part of the phone number.

Sanity check. this still works.
That still works too.

See how quickly a regular expression can get out of control? Take a quick glance at any of the previous iterations.
you tell the difference between one and the next?

While you still understand the final answer (and it is the final answer; if you've discovered a case it doesn't handle, |
don't want to know about it), let's write it out as a verbose regular expression, before you forget why you made the
choices you made.

Example 7.16. Parsing Phone Numbers (Final Version)

>>> phonePattern = re.compile(r"

don't match beginning of string, number can start anywhere

(\d{3}) # area code is 3 digits (e.g. '800")

Dive Into Python 92

\D* # optional separator is any number of non-digits
(\d{3}) #trunk is 3 digits (e.g. '555")

\D* # optional separator

(\d{4}) # rest of number is 4 digits (e.g. '1212")

\D* # optional separator

(\d*) # extension is optional and can be any number of digits
$ # end of string

" re.VERBOSE)

>>> phonePattern.search('work 1-(800) 555.1212 #1234").groups()
('800', '555', '1212', '1234")

>>> phonePattern.search('800-555-1212") (2]
('800', '555', '1212', ")

©® Other than being spread out over multiple lines, this is exactly the same regular expression as the last step, s
it's no surprise that it parses the same inputs.

® Final sanity check. Yes, this still works. You're done.
Further Reading on Regular Expressions

* Regular Expression HOWTO (http://py—howto.sourceforge.net/regex/regex.html) teaches about regular
expressions and how to use them in Python.

» Python Library Reference (http://www.python.org/doc/current/lib/) summarizes the re module
(http://www.python.org/doc/current/lib/module—re.html).

7.7. Summary

This is just the tiniest tip of the iceberg of what regular expressions can do. In other words, even though you're
completely overwhelmed by them now, believe me, you ain't seen nothing yet.

You should now be familiar with the following techniques:

« A matches the beginning of a string.

» $ matches the end of a string.

* \b matches a word boundary.

* \d matches any numeric digit.

* \D matches any non—numeric character.

* X? matches an optional x character (in other words, it matches an x zero or one times).

* X* matches x zero or more times.

* X+ matches x one or more times.

* x{n,m} matches an x character at least n times, but not more than m times.

* (alb|c) matches either a or b or c.

* (x) in general is a remembered group. You can get the value of what matched by using the groups()
method of the object returned by re.search.

Regular expressions are extremely powerful, but they are not the correct solution for every problem. You should lec
enough about them to know when they are appropriate, when they will solve your problems, and when they will cau
more problems than they solve.

Some people, when confronted with a problem, think "I know, I'll use regular expressions."
Now they have two problems.
——Jamie Zawinski, in comp.emacs.xemacs
(http://groups.google.com/groups?selm=33F0C496.370D7C45%40netscape.com)

Dive Into Python 93

http://py-howto.sourceforge.net/regex/regex.html
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-re.html
http://groups.google.com/groups?selm=33F0C496.370D7C45%40netscape.com

Chapter 8. HTML Processing

8.1. Diving in

| often see questions on comp.lang.python (http://groups.google.com/groups?group=comp.lang.python) like "How c
I list all the [headers|images|links] in my HTML document?" "How do | parse/translate/munge the text of my HTML
document but leave the tags alone?" "How can | add/remove/quote attributes of all my HTML tags at once?" This
chapter will answer all of these questions.

Here is a complete, working Python program in two parts. The first part, BaseHTMLProcessor.py, is a generic

tool to help you process HTML files by walking through the tags and text blocks. The second part, dialect.py, is

an example of how to use BaseHTMLProcessor.py to translate the text of an HTML document but leave the tags
alone. Read the doc strings and comments to get an overview of what's going on. Most of it will seem like black
magic, because it's not obvious how any of these class methods ever get called. Don't worry, all will be revealed in
due time.

Example 8.1. BaseHTMLProcessor.py

If you have not already done so, you can download this and other examples
(http://diveintopython.org/download/diveintopython—examples—5.4.zip) used in this book.

from sgmllib import SGMLParser
import htmlentitydefs

class BaseHTMLProcessor(SGMLParser):
def reset(self):
extend (called by SGMLParser.__init_)
self.pieces =[]
SGMLParser.reset(self)

def unknown_starttag(self, tag, attrs):
called for each start tag
attrs is a list of (attr, value) tuples
e.qg. for <pre class="screen">, tag="pre", attrs=[("class", "screen")]
Ideally we would like to reconstruct original tag and attributes, but
we may end up quoting attribute values that weren't quoted in the source
document, or we may change the type of quotes around the attribute value
(single to double quotes).
Note that improperly embedded non-HTML code (like client-side Javascript)
may be parsed incorrectly by the ancestor, causing runtime script errors.
All non—-HTML code must be enclosed in HTML comment tags (<!-- code ——>)
to ensure that it will pass through this parser unaltered (in handle_comment).
strattrs = "".join([' %s="%s" % (key, value) for key, value in attrs])
self.pieces.append("<%(tag)s%(strattrs)s>" % locals())

def unknown_endtag(self, tag):
called for each end tag, e.g. for </pre>, tag will be "pre"
Reconstruct the original end tag.
self.pieces.append("</%(tag)s>" % locals())

def handle_charref(self, ref):
called for each character reference, e.g. for " ", ref will be "160"
Reconstruct the original character reference.
self.pieces.append("&#%(ref)s;" % locals())

def handle_entityref(self, ref):

Dive Into Python 94

http://groups.google.com/groups?group=comp.lang.python
http://diveintopython.org/download/diveintopython-examples-5.4.zip

called for each entity reference, e.g. for "©", ref will be "copy"
Reconstruct the original entity reference.
self.pieces.append("&%(ref)s" % locals())
standard HTML entities are closed with a semicolon; other entities are not
if htmlentitydefs.entitydefs.has_key(ref):
self.pieces.append(";")

def handle_data(self, text):
called for each block of plain text, i.e. outside of any tag and
not containing any character or entity references
Store the original text verbatim.
self.pieces.append(text)

def handle_comment(self, text):
called for each HTML comment, e.g. <!-— insert Javascript code here ——>
Reconstruct the original comment.
It is especially important that the source document enclose client-side
code (like Javascript) within comments so it can pass through this
processor undisturbed; see comments in unknown_starttag for details.
self.pieces.append("<!--%(text)s——>" % locals())

def handle_pi(self, text):
called for each processing instruction, e.g. <?instruction>
Reconstruct original processing instruction.
self.pieces.append("<?%(text)s>" % locals())

def handle_decl(self, text):
called for the DOCTYPE, if present, e.g.
<IDOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html4/loose.dtd">
Reconstruct original DOCTYPE
self.pieces.append("<!%(text)s>" % locals())

def output(self):
""Return processed HTML as a single string™"
return " .join(self.pieces)

Example 8.2. dialect.py

import re
from BaseHTMLProcessor import BaseHTMLProcessor

class Dialectizer(BaseHTMLProcessor):
subs = ()

def reset(self):
extend (called from __init__in ancestor)
Reset all data attributes
self.verbatim =0
BaseHTMLProcessor.reset(self)

def start_pre(self, attrs):
called for every <pre> tag in HTML source
Increment verbatim mode count, then handle tag like normal
self.verbatim += 1
self.unknown_starttag("pre", attrs)

def end_pre(self):
called for every </pre> tag in HTML source
Decrement verbatim mode count
self.unknown_endtag("pre")

Dive Into Python

95

self.verbatim -= 1

def handle_data(self, text):
override
called for every block of text in HTML source
If in verbatim mode, save text unaltered;
otherwise process the text with a series of substitutions
self.pieces.append(self.verbatim and text or self.process(text))

def process(self, text):
called from handle_data
Process text block by performing series of regular expression
substitutions (actual substitions are defined in descendant)
for fromPattern, toPattern in self.subs:
text = re.sub(fromPattern, toPattern, text)
return text

class ChefDialectizer(Dialectizer):
""" convert HTML to Swedish Chef-speak

based on the classic chef.x, copyright (c) 1992, 1993 John Hagerman
subs = ((ra([nu])’, r'u\l’),

(rA([nu])’, r'u\1y),

(ra\B', r'e’),

(rA\B', r'E"),

(r'en\b’, r'ee"),

(r'\Bew', r'oo"),

(r'\Be\b', r'e-a’),

(r'\be', r'i"),

(rMbE', r'l"),

(r'\Bf', r'ff"),

(r'\Bir', r'ur"),

(r'(w*?)i(w*?)$', r'\lee\2"),

(r'\bow', r'oa’),

(r'\bo', r'oo’),

(r"b0O’, roo"),

(r'the’, r'zee"),

(r'The', r'zee",

(r'th\b', r't"),

(r'\Btion', r'shun’),

(r\Bu', r'oo’),

(r"\BU', r'00"),

(r'v', r'f",

r'v', r'e),

(r'w', r'w"),

(r'w', r'w),

(r'(la=z])[.]', r\1. Bork Bork Bork!))

class FuddDialectizer(Dialectizer):
"""convert HTML to Elmer Fudd-speak™"
subs = ((r'[rI], r'w"),
(rqu’, rgqw’),
(rth\b', r'f"),
(rth', r'd"),
(r'n[.]', r'n, uh—hah—hah-hah."))

class OldeDialectizer(Dialectizer):
""convert HTML to mock Middle English™"
subs = ((r'i([bcdfghjkimnpgrstvwxyz])e\b', r'y\1’),
(r'i([bcdfghjklimnpgrstvwxyz])e’, r'y\1\1e’),
(r'ick\b', r'yk",
(ria([bcdfghjklmnpgrstvwxyz])', r'e\le"),

Dive Into Python

(re[ea]([bcdfghjkimnpgrstvwxyz])', r'e\le’),
(r'([bcdfghjklmnpgrstvwxyz])y', r'\lee"),
(r'([bcdfghjklmnpgrstvwxyz])er', r'\lre'),
(r'([aeiou])re\b’, r'\1r",
(ria([bcdfghjklmnpgrstvwxyz])', r'i\le’),
(r'tion\b’, r'cioun’),

(rion\b', rioun’),

(r'aid', rayde"),

(rai', r'ey"),

(r'ay\b', r'y"),

(ray’', r'ey",

(rant’, raunt’),

(rea’, ree’),

(r'oa’, r'oo'),

(r'ue', r'e"),

(r'oe', r'o"),

(r'ou’, r'ow"),

(row’, r'ou’),

(r"\bhe', r'hi"),

(r've\b’, r'veth’),

(r'se\b’, r'e"),

(rs\b", r'es"),

(ric\b', r'ick’),

(rics\b', r'icc’),

(rical\b’, r'ick"),

(r'tle\b’, r'til"),

(r'i\b, r'lY,

(r'ould\b', r'olde"),

(r'own\b', r'oune’),

(r'un\b’, r'onne’),

(r'rey\b’, r'rye’),

(r'est\b’, r'este’),

(r'pt\b', r'pte"),

(r'th\b', r'the"),

(r'ch\b', r'che’),

(r'ss\b’, r'sse”),

(r'([wybdp])\b’, r'\1e’),

(r'([rnt)\b', r\1\1e"),

(r'from’, r'fro"),

(r'when’, r'whan'))

def translate(url, dialectName="chef"):
""" fetch URL and translate using dialect

dialect in ("chef", "fudd", "olde")""
import urllib

sock = urllib.urlopen(url)

htmISource = sock.read()
sock.close()

parserName = "%sDialectizer" % dialectName.capitalize()
parserClass = globals()[parserName]
parser = parserClass()
parser.feed(htmlSource)
parser.close()

return parser.output()

def test(url):
"""test all dialects against URL""
for dialect in ("chef", "fudd", "olde"):
outfile = "%s.html" % dialect
fsock = open(outfile, "wb")
fsock.write(translate(url, dialect))
fsock.close()

Dive Into Python

import webbrowser
webbrowser.open_new(outfile)

if _name__=="_ main__":
test("http://diveintopython.org/odbchelper_list.html")

Example 8.3. Output of dialect.py

Running this script will translate Section 3.2, Introducing Lists into mock Swedish Chef-speak
(../native_data_types/chef.html) (from The Muppets), mock Elmer Fudd-speak (../native_data_types/fudd.html) (fro
Bugs Bunny cartoons), and mock Middle English (../native_data_types/olde.html) (loosely based on Chaucer's The
Canterbury Tales). If you look at the HTML source of the output pages, you'll see that all the HTML tags and
attributes are untouched, but the text between the tags has been "translated" into the mock language. If you look
closer, you'll see that, in fact, only the titles and paragraphs were translated; the code listings and screen examples
were left untouched.

<div class="abstract">

<p>Lists awe Pydon's wowkhowse datatype.
If youw onwy expewience wif wists is awways in

Visuaw Basic ow (God fowbid) de datastowe
in Powewbuiwdew, bwace youwsewf fow
Pydon wists.</p>

</div>

8.2. Introducing sgmllib.py

HTML processing is broken into three steps: breaking down the HTML into its constituent pieces, fiddling with the
pieces, and reconstructing the pieces into HTML again. The first step is done by sgmllib.py, a part of the standard
Python library.

The key to understanding this chapter is to realize that HTML is not just text, it is structured text. The structure is
derived from the more—or—less—hierarchical sequence of start tags and end tags. Usually you don't work with HTML
this way; you work with it textually in a text editor, or visually in a web browser or web authoring tool. sgmllib.py
presents HTML structurally.

sgmllib.py contains one important class: SGMLParser. SGMLParser parses HTML into useful pieces, like

start tags and end tags. As soon as it succeeds in breaking down some data into a useful piece, it calls a method o
itself based on what it found. In order to use the parser, you subclass the SGMLParser class and override these
methods. This is what | meant when | said that it presents HTML structurally: the structure of the HTML determines
the sequence of method calls and the arguments passed to each method.

SGMLParser parses HTML into 8 kinds of data, and calls a separate method for each of them:

Start tag
An HTML tag that starts a block, like <htmlI>, <head>, <body>, or <pre>, or a standalone tag like

or . When it finds a start tatagname, SGMLParser will look for a method called
start_tagname or do_tagname. For instance, when it finds a <pre> tag, it will look for a
start_pre or do_pre method. If found, SGMLParser calls this method with a list of the tag's attributes;
otherwise, it calls unknown_starttag with the tag name and list of attributes.

End tag
An HTML tag that ends a block, like </html>, </head>, </body>, or </pre>. When it finds an end
tag, SGMLParser will look for a method called end_tagname. If found, SGMLParser calls this method,
otherwise it calls unknown_endtag with the tag name.

Dive Into Python 98

Character reference
An escaped character referenced by its decimal or hexadecimal equivalent, like . When found,
SGMLParser calls handle_charref with the text of the decimal or hexadecimal character equivalent.
Entity reference
An HTML entity, like ©. When found, SGMLParser calls handle_entityref with the name of
the HTML entity.
Comment
An HTML comment, enclosed in <I-- ... ——>. When found, SGMLParser calls handle_comment
with the body of the comment.
Processing instruction
An HTML processing instruction, enclosed in <? ... >. When found, SGMLParser calls handle_pi
with the body of the processing instruction.
Declaration
An HTML declaration, such as a DOCTYPE, enclosed in <! ... >. When found, SGMLParser calls
handle_decl with the body of the declaration.
Text data
A block of text. Anything that doesn't fit into the other 7 categories. When found, SGMLParser calls
handle_data with the text.

Python 2.0 had a bug wherk SGMLParser would not recognize declarations at all (handle_decl would never be
called), which meant that DOCTYPEs were silently ignored. This is fixed in Python 2.1.

sgmllib.py comes with a test suite to illustrate this. You can run sgmllib.py, passing the name of an HTML

file on the command line, and it will print out the tags and other elements as it parses them. It does this by subclass
the SGMLParser class and defining unknown_starttag, unknown_endtag, handle_data and other

methods which simply print their arguments.

In the ActivePython IDE oniWindows, you can specify command line arguments in the "Run script" dialog. Separat
multiple arguments with spaces.

Example 8.4. Sample test of sgmllib.py

Here is a snippet from the table of contents of the HTML version of this book. Of course your paths may vary. (If yol
haven't downloaded the HTML version of the book, you can do so at http://diveintopython.org/.

c:\python23\lib> type "c:\downloads\diveintopython\html\toc\index.html"
<IDOCTYPE html
PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
<html lang="en">
<head>
<meta http—equiv="Content-Type" content="text/html; charset=1SO-8859-1">

<title>Dive Into Python</title>
<link rel="stylesheet" href="diveintopython.css" type="text/css">

... rest of file omitted for brevity ...

Running this through the test suite of sgmllib.py yields this output:

c:\python23\lib> python sgmllib.py "c:\downloads\diveintopython\html\toc\index.html|"
data: \n\n'

start tag: <html lang="en" >

data: \n

Dive Into Python 99

http://diveintopython.org/

start tag: <head>

data: \n

start tag: <meta http—equiv="Content-Type" content="text/html; charset=1SO-8859-1" >
data:'\n \n '

start tag: <title>

data: 'Dive Into Python'

end tag: </title>

data: \n

start tag: <link rel="stylesheet" href="diveintopython.css" type="text/css" >

data: \n

... rest of output omitted for brevity ...
Here's the roadmap for the rest of the chapter:

» Subclass SGMLParser to create classes that extract interesting data out of HTML documents.

* Subclass SGMLParser to create BaseHTMLProcessor, which overrides all 8 handler methods and uses
them to reconstruct the original HTML from the pieces.

» Subclass BaseHTMLProcessor to create Dialectizer, which adds some methods to process specific
HTML tags specially, and overrides the handle_data method to provide a framework for processing the
text blocks between the HTML tags.

» Subclass Dialectizer to create classes that define text processing rules used by
Dialectizer.handle_data.

« Write a test suite that grabs a real web page from http://diveintopython.org/ and processes it.

Along the way, you'll also learn about locals, globals, and dictionary—based string formatting.

8.3. Extracting data from HTML documents

To extract data from HTML documents, subclass the SGMLParser class and define methods for each tag or entity
you want to capture.

The first step to extracting data from an HTML document is getting some HTML. If you have some HTML lying
around on your hard drive, you can use file functions to read it, but the real fun begins when you get HTML from live
web pages.

Example 8.5. Introducing urllib

>>> import urllib
>>> sock = urllib.urlopen("http://diveintopython.org/")
>>> htmlSource = sock.read()
>>> sock.close()
>>> print htmISource
<IDOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.0org/TR/html4/loose.dtd"><htmI><head>
<meta http—equiv="Content-Type' content="text/html; charset=ISO-8859-1">
<title>Dive Into Python</title>
<link rel="stylesheet' href="diveintopython.css' type="text/css'>
<link rev="made’ href="mailto:mark@diveintopython.org>
<meta name='keywords' content="'Python, Dive Into Python, tutorial, object-oriented, programming, documentation, book, free'>
<meta name='description' content="a free Python tutorial for experienced programmers'>
</head>
<body bgcolor="white' text="black’ link="#0000FF" vlink="#840084" alink="#0000FF'>
<table cellpadding="0" cellspacing="0" border='0" width="100%">
<tr><td class="header' width="1%'" valign="top'>diveintopython.org</td>
<td width="99%" align="right'><hr size='1' noshade></td></tr>
<tr><td class="tagline' colspan="'2'>Python for experienced programmers</td></tr>

0000e

Dive Into Python 100

[...snip...]

©® The urllib module is part of the standard Python library. It contains functions for getting information about
and actually retrieving data from Internet-based URLs (mainly web pages).

® The simplest use of urllib is to retrieve the entire text of a web page using the urlopen function. Opening
a URL is similar to opening a file. The return value of urlopen is a file-like object, which has some of the
same methods as a file object.

® The simplest thing to do with the file-like object returned by urlopen is read, which reads the entire HTML
of the web page into a single string. The object also supports readlines, which reads the text line by line
into a list.

When you're done with the object, make sure to close it, just like a normal file object.

You now have the complete HTML of the home page of http://diveintopython.org/ in a string, and
you're ready to parse it.

()

Example 8.6. Introducing urllister.py

If you have not already done so, you can download this and other examples
(http://diveintopython.org/download/diveintopython—examples—5.4.zip) used in this book.

from sgmllib import SGMLParser

class URLLister(SGMLParser):

def reset(self): (1]
SGMLParser.reset(self)
self.urls =]

def start_a(self, attrs): (2]
href = [v for k, v in attrs if k=="href"] ©0
if href:

self.urls.extend(href)

©® resetis called by the __init__ method of SGMLParser, and it can also be called manually once an
instance of the parser has been created. So if you need to do any initialization, do it in reset, not in
__init__, so that it will be re—initialized properly when someone re—-uses a parser instance.

12 start_a is called by SGMLParser whenever it finds an <a> tag. The tag may contain an href attribute,
and/or other attributes, like name or title. The attrs parameter is a list of tuples, [(attribute,
value), (attribute, value), ...]. Or it may be just an <a>, a valid (if useless) HTML tag, in
which case attrs would be an empty list.

® You can find out whether this <a> tag has an href attribute with a simple multi—variable list comprehension.
(4

String comparisons like k=="href' are always case-sensitive, but that's safe in this case, because
SGMLParser converts attribute names to lowercase while building attrs.

Example 8.7. Using urllister.py

>>> import urllib, urllister

>>> usock = urllib.urlopen("http://diveintopython.org/")
>>> parser = urllister.URLLister()
>>> parser.feed(usock.read())
>>> usock.close()

>>> parser.close()

>>> for url in parser.urls: print url
toc/index.html

#download

Co0e

Dive Into Python 101

http://diveintopython.org/download/diveintopython-examples-5.4.zip

#languages

toc/index.html

appendix/history.html
download/diveintopython-htmI-5.0.zip
download/diveintopython—pdf-5.0.zip
download/diveintopython-word-5.0.zip
download/diveintopython—-text—5.0.zip
download/diveintopython—-html-flat-5.0.zip
download/diveintopython—-xml|-5.0.zip
download/diveintopython-common-5.0.zip

... rest of output omitted for brevity ...

@ cCall the feed method, defined in SGMLParser, to get HTML into the pars[(le]rlt takes a string, which is
what usock.read() returns.

B | ike files, you should close your URL objects as soon as you're done with them.

® You should close your parser object, too, but for a different reason. You've read all the data and fed it to the
parser, but the feed method isn't guaranteed to have actually processed all the HTML you give it; it may
buffer it, waiting for more. Be sure to call close to flush the buffer and force everything to be fully parsed.

(4

Once the parser is closed, the parsing is complete, and parser.urls contains a list of all the linked URLs
in the HTML document. (Your output may look different, if the download links have been updated by the time
you read this.)

8.4. Introducing BaseHTMLProcessor.py

SGMLParser doesn't produce anything by itself. It parses and parses and parses, and it calls a method for each
interesting thing it finds, but the methods don't do anything. SGMLParser is an HTML consumer: it takes HTML
and breaks it down into small, structured pieces. As you saw in the previous section, you can subclass SGMLParse
to define classes that catch specific tags and produce useful things, like a list of all the links on a web page. Now yc
take this one step further by defining a class that catches everything SGMLParser throws at it and reconstructs the
complete HTML document. In technical terms, this class will be an HTML producer.

BaseHTMLProcessor subclasses SGMLParser and provides all 8 essential handler methods:
unknown_starttag, unknown_endtag, handle_charref, handle_entityref, handle_comment,
handle_pi, handle_decl, and handle_data.

Example 8.8. Introducing BaseHTMLProcessor

class BaseHTMLProcessor(SGMLParser):
def reset(self): 1]

self.pieces =[]
SGMLParser.reset(self)

def unknown_starttag(self, tag, attrs): (2]
strattrs = "".join([' %s="%s" % (key, value) for key, value in attrs])
self.pieces.append("<%(tag)s%(strattrs)s>" % locals())

def unknown_endtag(self, tag): (3]
self.pieces.append("</%(tag)s>" % locals())

def handle_charref(self, ref): (4]
self.pieces.append("&#%(ref)s;" % locals())

def handle_entityref(self, ref): (5]
self.pieces.append("&%(ref)s" % locals())

Dive Into Python

102

if htmlentitydefs.entitydefs.has_key(ref):
self.pieces.append(";")

def handle_data(self, text): (6]
self.pieces.append(text)

def handle_comment(self, text): 7]
self.pieces.append("<!--%(text)s——>" % locals())

def handle_pi(self, text): (8]
self.pieces.append("<?%(text)s>" % locals())

def handle_decl(self, text):
self.pieces.append("<!%(text)s>" % locals())

Q reset, called by SGMLParser.__init__, initializes self.pieces as an empty list before calling the
ancestor method. self.pieces is a data attribute which will hold the pieces of the HTML document you're
constructing. Each handler method will reconstruct the HTML that SGMLParser parsed, and each method
will append that string to self.pieces. Note that self.pieces is a list. You might be tempted to define
it as a string andﬂ'ust keep appending each piece to it. That would work, but Python is much more efficient at
dealing with listd’

® Since BaseHTMLProcessor does not define any methods for specific tags (like the start_a method in
URLLister), SGMLParser will call unknown_starttag for every start tag. This method takes the tag
(tag) and the list of attribute name/value pairs (attrs), reconstructs the original HTML, and appends it to
self.pieces. The string formatting here is a little strange; you'll untangle that (and also the odd-looking
locals function) later in this chapter.

Reconstructing end tags is much simpler; just take the tag name and wrap it in the </...> brackets.

When SGMLParser finds a character reference, it calls handle_charref with the bare reference. If the
HTML document contains the reference , ref will be 160. Reconstructing the original complete
character reference just involves wrapping ref in &#...; characters.

(5 Entity references are similar to character references, but without the hash mark. Reconstructing the original
entity reference requires wrapping ref in &...; characters. (Actually, as an erudite reader pointed out to me,
it's slightly more complicated than this. Only certain standard HTML entites end in a semicolon; other
similar—looking entities do not. Luckily for us, the set of standard HTML entities is defined in a dictionary in a
Python module called htmlentitydefs. Hence the extra if statement.)

@ Blocks of text are simply appended to self.pieces unaltered.
@ HTML comments are wrapped in <!--...——> characters.
18] Processing instructions are wrapped in <?...> characters.

L~

The HTML specification reduires that all non-HTML (like client-side JavaScript) must be enclosed in HTML
comments, but not all web pages do this properly (and all modern web browsers are forgiving if they don't).
BaseHTMLProcessor is not forgiving; if script is improperly embedded, it will be parsed as if it were HTML. For
instance, if the script contains less—than and equals signs, SGMLParser may incorrectly think that it has found tags
and attributes. SGMLParser always converts tags and attribute names to lowercase, which may break the script,
and BaseHTMLProcessor always encloses attribute values in double quotes (even if the original HTML

document used single quotes or no quotes), which will certainly break the script. Always protect your client-side
script within HTML comments.

Example 8.9. BaseHTMLProcessor output

def output(self): (1]
""Return processed HTML as a single string™"
return ".join(self.pieces)

Dive Into Python 103

@ This is the one method in BaseHTMLProcessor that is never called by the ancestor
SGMLParser. Since the other handler methods store their reconstructed HTML in
self.pieces, this function is needed to join all those pieces into one string. As noted
before, Python is great at lists and mediocre at strings, so you only create the complete string
when somebody explicitly asks for it.

® you prefer, you could use the join method of the string module instead:
string.join(self.pieces, ")
Further reading

* W3C (http://www.w3.0rg/) discusses character and entity references
(http:/ivww.w3.0rg/TR/REC-html40/charset.html#entities).

» Python Library Reference (http://www.python.org/doc/current/lib/) confirms your suspicions that the
htmlentitydefs module (http://www.python.org/doc/current/lib/module-htmlentitydefs.html) is exactly
what it sounds like.

8.5. locals and globals

Let's digress from HTML processing for a minute and talk about how Python handles variables. Python has two
built—in functions, locals and globals, which provide dictionary—based access to local and global variables.

Remember locals? You first saw it here:

def unknown_starttag(self, tag, attrs):
strattrs = "".join([' %s="%s" % (key, value) for key, value in attrs])
self.pieces.append("<%(tag)s%(strattrs)s>" % locals())

No, wait, you can't learn about locals yet. First, you need to learn about namespaces. This is dry stuff, but it's
important, so pay attention.

Python uses what are called namespaces to keep track of variables. A nhamespace is just like a dictionary where tht
keys are names of variables and the dictionary values are the values of those variables. In fact, you can access a
namespace as a Python dictionary, as you'll see in a minute.

At any particular point in a Python program, there are several namespaces available. Each function has its own
namespace, called the local namespace, which keeps track of the function's variables, including function argument:
and locally defined variables. Each module has its own namespace, called the global namespace, which keeps trac
the module's variables, including functions, classes, any other imported modules, and module-level variables and
constants. And there is the built—in namespace, accessible from any module, which holds built-in functions and
exceptions.

When a line of code asks for the value of a variable x, Python will search for that variable in all the available
namespaces, in order:

1.local namespace - specific to the current function or class method. If the function defines a local variable X,
or has an argument x, Python will use this and stop searching.

2. global namespace - specific to the current module. If the module has defined a variable, function, or class
called x, Python will use that and stop searching.

3. built-in namespace - global to all modules. As a last resort, Python will assume that x is the name of built-i
function or variable.

If Python doesn't find x in any of these namespaces, it gives up and raises a NameError with the message There
is no variable named 'x', which you saw back in Example 3.18, Referencing an Unbound Variable , but

Dive Into Python 104

http://www.w3.org/
http://www.w3.org/TR/REC-html40/charset.html#entities
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-htmlentitydefs.html

you didn't appreciate how much work Python was doing before giving you that error.

Python 2.2 introduced a subtle but important change that affects the namespace search order: nested scopes. In
versions of Python prior to 2.2, when you reference a variable within a nested function or lambda function, Python
will search for that variable in the current (nested or lambda) function's namespace, then in the module's
namespace. Python 2.2 will search for the variable in the current (nested or lambda) function's namespace, then in
the parent function's namespace, then in the module's namespace. Python 2.1 can work either way; by default, it
works like Python 2.0, but you can add the following line of code at the top of your module to make your module
work like Python 2.2:

from __ future__ import nested_scopes

Are you confused yet? Don't despair! This is really cool, | promise. Like many things in Python, namespaces are
directly accessible at run—time. How? Well, the local namespace is accessible via the built-in locals function, and
the global (module level) namespace is accessible via the built—in globals function.

Example 8.10. Introducing locals

>>> def foo(arg): 1]
x=1
print locals()
>>> foo(7) (2]
{arg" 7, 'x" 1}
>>> foo('bar’) (3]

{'arg" 'bar’, 'x": 1}

© The function foo has two variables in its local namespace: arg, whose value is passed in to the
function, and x, which is defined within the function.

® |ocals returns a dictionary of name/value pairs. The keys of this dictionary are the names of the
variables as strings; the values of the dictionary are the actual values of the variables. So calling foo
with 7 prints the dictionary containing the function's two local variables: arg (7) and x (1).

® Remember, Python has dynamic typing, so you could just as easily pass a string in for arg; the function
(and the call to locals) would still work just as well. locals works with all variables of all datatypes.

What locals does for the local (function) namespace, globals does for the global (module) namespace.

globals is more exciting, though, because a module's namespace is more exéftifpt only does the module's

namespace include module—level variables and constants, it includes all the functions and classes defined in the

module. Plus, it includes anything that was imported into the module.

Remember the difference between from module import and import module? With import module, the

module itself is imported, but it retains its own namespace, which is why you need to use the module name to acce:
any of its functions or attributes: module.function. But with from module import, you're actually

importing specific functions and attributes from another module into your own namespace, which is why you access

them directly without referencing the original module they came from. With the globals function, you can actually
see this happen.

Example 8.11. Introducing globals
Look at the following block of code at the bottom of BaseHTMLProcessor.py:
if _name__ =="_ main__"

Dive Into Python 105

for k, v in globals().items(): (1]
print k, "=", v

Q® Justso you don't get intimidated, remember that you've seen all this before. The globals function returns a
dictionary, and you're iterating through the dictionary using the items method and multi-variable assignment.
The only thing new here is the globals function.

Now running the script from the command line gives this output (note that your output may be slightly different,

depending on your platform and where you installed Python):

c:\docbook\dip\py> python BaseHTMLProcessor.py

SGMLParser = sgmllib. SGMLParser (1]

htmlentitydefs = <module 'htmlentitydefs' from 'C:\Python23\lib\htmlentitydefs.py'> (2]
BaseHTMLProcessor = __main__.BaseHTMLProcessor

__name__=_ main__ (4

... rest of output omitted for brevity...

©® SGMLParser was imported from sgmllib, using from module import. That means that it was
imported directly into the module's namespace, and here it is.

® Contrast this with htmlentitydefs, which was imported using import. That means that the
htmlentitydefs module itself is in the namespace, but the entitydefs variable defined within
htmlentitydefs is not.

® This module only defines one class, BaseHTMLProcessor, and here it is. Note that the value here is the
class itself, not a specific instance of the class.

© Remember the if __name___trick? When running a module (as opposed to importing it from another
module), the built-in __name___ attribute is a special value, __main__. Since you ran this module as a script
from the command line, _name__is __main__, which is why the little test code to print the globals got
executed.

Using the locals and globals functions, you can get the value of arbitrary variables dynamically, providing the
variable name as a string. This mirrors the functionality of the getattr function, which allows you to access
arbitrary functions dynamically by providing the function name as a string.

There is one other important difference between the locals and globals functions, which you should learn now
before it bites you. It will bite you anyway, but at least then you'll remember learning it.

Example 8.12. locals is read-only, globals is not

def foo(arg):
x=1
print locals() (1]
locals()["x"] = 2

print "x=",x

o0

z=7

print "z=",z

foo(3)

globals()['z"] = 8 (4]
print "z=", (5]

@ Since foo is called with 3, this will print {'"arg": 3, 'x": 1}. This should not be a surprise.

® |ocals is a function that returns a dictionary, and here you are setting a value in that dictionary. You
might think that this would change the value of the local variable x to 2, but it doesn't. locals does not
actually return the local namespace, it returns a copy. So changing it does nothing to the value of the

Dive Into Python 106

variables in the local namespace.
This prints x= 1, not x= 2.

After being burned by locals, you might think that this wouldn't change the value of z, but it does.

Due to internal differences in how Python is implemented (which I'd rather not go into, since | don't fully
understand them myself), globals returns the actual global namespace, not a copy: the exact opposite
behavior of locals. So any changes to the dictionary returned by globals directly affect your global
variables.

® This prints z= 8, not z=7.
8.6. Dictionary—based string formatting

L~)

Why did you learn about locals and globals? So you can learn about dictionary—based string formatting. As you
recall, regular string formatting provides an easy way to insert values into strings. Values are listed in a tuple and
inserted in order into the string in place of each formatting marker. While this is efficient, it is not always the easiest
code to read, especially when multiple values are being inserted. You can't simply scan through the string in one pe
and understand what the result will be; you're constantly switching between reading the string and reading the tuple
values.

There is an alternative form of string formatting that uses dictionaries instead of tuples of values.

Example 8.13. Introducing dictionary—based string formatting

>>> params = {"server":"mpilgrim", "database":"master", "uid":"sa", "pwd":"secret"}
>>> "% (pwd)s" % params

'secret’

>>> "% (pwd)s is not a good password for %(uid)s" % params (2]
'secret is not a good password for sa'

>>> "% (database)s of mind, %(database)s of body" % params (3]

‘master of mind, master of body"

©® Instead ofa tuple of explicit values, this form of string formatting uses a dictionary, params. And

instead of a simple %s marker in the string, the marker contains a name in parentheses. This name is

used as a key in the params dictionary and subsitutes the corresponding value, secret, in place of

the %(pwd)s marker.
(2 Dictionary—based string formatting works with any number of named keys. Each key must exist in the

given dictionary, or the formatting will fail with a KeyError.
® vYoucaneven specify the same key twice; each occurrence will be replaced with the same value.
So why would you use dictionary—based string formatting? Well, it does seem like overkill to set up a dictionary of
keys and values simply to do string formatting in the next line; it's really most useful when you happen to have a
dictionary of meaningful keys and values already. Like locals.

Example 8.14. Dictionary—based string formatting in BaseHTMLProcessor.py

def handle_comment(self, text):
self.pieces.append("<!--%(text)s——>" % locals()) 1]

o Using the built-in locals function is the most common use of dictionary—based string formatting. It means
that you can use the names of local variables within your string (in this case, text, which was passed to the
class method as an argument) and each named variable will be replaced by its value. If text is 'Begin
page footer', the string formatting "<!-—%(text)s——>" % locals() will resolve to the string
'<I-—-Begin page footer——>'.

Dive Into Python 107

Example 8.15. More dictionary—based string formatting

def unknown_starttag(self, tag, attrs):
strattrs = ".join([' %s="%s"" % (key, value) for key, value in attrs]) (1]
self.pieces.append("<%(tag)s%(strattrs)s>" % locals()) (2]

@ When this method is called, attrs is a list of key/value tuples, just like the items of a dictionary, which
means you can use multi-variable assignment to iterate through it. This should be a familiar pattern by now,
but there's a lot going on here, so let's break it down:

a. Suppose attrs is [('href', 'index.html"), (‘title', 'Go to home page')].

b. In the first round of the list comprehension, key will get 'href', and value will get
‘index.html".

c. The string formatting ' %s="%s" % (key, value) will resolve to
" href="index.html". This string becomes the first element of the list comprehension'’s return
value.

d. In the second round, key will get 'title’, and value will get '‘Go to home page'.

e. The string formatting will resolve to ' title="Go to home page".

f. The list comprehension returns a list of these two resolved strings, and strattrs will join both

elements of this list together to form ' href="index.html" titte="Go to home page™.

® Now, using dictionary—based string formatting, you insert the value of tag and strattrs into a string. So if
tag is 'a’, the final result would be '',
and that is what gets appended to self.pieces.

Using dictionary—based strihg formatting with locals is a convenient way of making complex string formatting
expressions more readable, but it comes with a price. There is a slight performance hit in making the call to locals,
since locals builds a copy of the local namespace.

8.7. Quoting attribute values

A common guestion on comp.lang.python (http://groups.google.com/groups?group=comp.lang.python) is "l have a
bunch of HTML documents with unquoted attribute values, and | want to properly quote them all. How can | do
this?'™! (This is generally precipitated by a project manager who has found the HTML-is—a—standard religion joining
a large project and proclaiming that all pages must validate against an HTML validator. Unquoted attribute values a
a common violation of the HTML standard.) Whatever the reason, unquoted attribute values are easy to fix by feedi
HTML through BaseHTMLProcessor.

BaseHTMLProcessor consumes HTML (since it's descended from SGMLParser) and produces equivalent

HTML, but the HTML output is not identical to the input. Tags and attribute names will end up in lowercase, even if
they started in uppercase or mixed case, and attribute values will be enclosed in double quotes, even if they startec
single quotes or with no quotes at all. It is this last side effect that you can take advantage of.

Example 8.16. Quoting attribute values

>>> htmlSource = " (1]
<html>
<head>
<title>Test page</title>
</head>
<body>

Home
Table of contents
Revision history

Dive Into Python 108

http://groups.google.com/groups?group=comp.lang.python

</body>
</html>

>>> from BaseHTMLProcessor import BaseHTMLProcessor
>>> parser = BaseHTMLProcessor()

>>> parser.feed(htmlSource)

>>> print parser.output() (3]

<html>

<head>

<title>Test page</title>

</head>

<body>

Home

Table of contents
Revision history
</body>

</html>

®0Q

Note that the attribute values of the href attributes in the <a> tags are not properly quoted. (Also note that
you're using triple quotes for something other than a doc string. And directly in the IDE, no less. They're
very useful.)

Feed the parser.

Using the output function defined in BaseHTMLProcessor, you get the output as a single string, complete
with quoted attribute values. While this may seem anti—climactic, think about how much has actually happene
here: SGMLParser parsed the entire HTML document, breaking it down into tags, refs, data, and so forth;
BaseHTMLProcessor used those elements to reconstruct pieces of HTML (which are still stored in
parser.pieces, if you want to see them); finally, you called parser.output, which joined all the

pieces of HTML into one string.

8.8. Introducing dialect.py

Dialectizer is a simple (and silly) descendant of BaseHTMLProcessor. It runs blocks of text through a series
of substitutions, but it makes sure that anything within a <pre>...</pre> block passes through unaltered.

To handle the <pre> blocks, you define two methods in Dialectizer: start_pre and end_pre.

Example 8.17. Handling specific tags

def start_pre(self, attrs): 1]
self.verbatim += 1 (2]
self.unknown_starttag("pre", attrs) (3]
def end_pre(self): (4]
self.unknown_endtag("pre") (5]
self.verbatim —= 1 (6]
o start_pre is called every time SGMLParser finds a <pre> tag in the HTML source. (In a minute, you'l
see exactly how this happens.) The method takes a single parameter, attrs, which contains the attributes of
the tag (if any). attrs is a list of key/value tuples, just like unknown_starttag takes.
® | the reset method, you initialize a data attribute that serves as a counter for <pre> tags. Every time you hit
a <pre> tag, you increment the counter; every time you hit a </pre> tag, you'll decrement the counter. (You
could just use this as a flag and set it to 1 and reset it to 0, but it's just as easy to do it this way, and this hand|
the odd (but possible) case of nested <pre> tags.) In a minute, you'll see how this counter is put to good use.
(3]

Dive Into Python 109

That's it, that's the only special processing you do for <pre> tags. Now you pass the list of attributes along to
unknown_starttag so it can do the default processing.

4 end_pre is called every time SGMLParser finds a </pre> tag. Since end tags can not contain attributes,
the method takes no parameters.

® First, you want to do the default processing, just like any other end tag.

® second, you decrement your counter to signal that this <pre> block has been closed.

At this point, it's worth digging a little further into SGMLParser. I've claimed repeatedly (and you've taken it on
faith so far) that SGMLParser looks for and calls specific methods for each tag, if they exist. For instance, you just
saw the definition of start_pre and end_pre to handle <pre> and </pre>. But how does this happen? Well,

it's not magic, it's just good Python coding.

Example 8.18. SGMLParser

def finish_starttag(self, tag, attrs): (1]
try:
method = getattr(self, 'start_' + tag) (2]
except AttributeError: (3]
try:
method = getattr(self, 'do_' + tag) (4]
except AttributeError:
self.unknown_starttag(tag, attrs) (5]
return -1
else:
self.handle_starttag(tag, method, attrs) (6]
return O
else:
self.stack.append(tag)
self.handle_starttag(tag, method, attrs)
return 1 7]
def handle_starttag(self, tag, method, attrs):
method(attrs) (8]

Q@ Atthis point, SGMLParser has already found a start tag and parsed the attribute list. The only
thing left to do is figure out whether there is a specific handler method for this tag, or whether
you should fall back on the default method (unknown_starttag).

® The "magic" of SGMLParser is hothing more than your old friend, getattr. What you may
not have realized before is that getattr will find methods defined in descendants of an
object as well as the object itself. Here the object is self, the current instance. So if tag is
'pre’, this call to getattr will look for a start_pre method on the current instance,
which is an instance of the Dialectizer class.

© getattr raises an AttributeError if the method it's looking for doesn't exist in the
object (or any of its descendants), but that's okay, because you wrapped the call to getattr
inside a try...except block and explicitly caught the AttributeError.

@ Since you didn't find a start_xxx method, you'll also look for a do_xxx method before
giving up. This alternate naming scheme is generally used for standalone tags, like
,
which have no corresponding end tag. But you can use either naming scheme; as you can see,
SGMLParser tries both for every tag. (You shouldn't define both a start_xxx and
do_xxx handler method for the same tag, though; only the start_xxx method will get
called.)

© Another AttributeError, which means that the call to getattr failed with do_xxx.
Since you found neither a start_xxx nor a do_xxx method for this tag, you catch the

Dive Into Python 110

exception and fall back on the default method, unknown_starttag.

® Remember, try...except blocks can have an else clause, which is called if no exception
is raised during the try...except block. Logically, that means that you did find a do_xxx
method for this tag, so you're going to call it.

o By the way, don't worry about these different return values; in theory they mean something, but
they're never actually used. Don't worry about the self.stack.append(tag) either;
SGMLParser keeps track internally of whether your start tags are balanced by appropriate
end tags, but it doesn't do anything with this information either. In theory, you could use this
module to validate that your tags were fully balanced, but it's probably not worth it, and it's
beyond the scope of this chapter. You have better things to worry about right now.

18] start_xxx and do_xxx methods are not called directly; the tag, method, and attributes are

passed to this function, handle_starttag, so that descendants can override it and change

the way all start tags are dispatched. You don't need that level of control, so you just let this

method do its thing, which is to call the method (start_xxx or do_xxx) with the list of

attributes. Remember, method is a function, returned from getattr, and functions are

objects. (I know you're getting tired of hearing it, and | promise I'll stop saying it as soon as |

run out of ways to use it to my advantage.) Here, the function object is passed into this dispatch

method as an argument, and this method turns around and calls the function. At this point, you

don't need to know what the function is, what it's named, or where it's defined; the only thing

you need to know about the function is that it is called with one argument, attrs.
Now back to our regularly scheduled program: Dialectizer. When you left, you were in the process of defining
specific handler methods for <pre> and </pre> tags. There's only one thing left to do, and that is to process text
blocks with the pre—defined substitutions. For that, you need to override the handle_data method.

Example 8.19. Overriding the handle_data method

def handle_data(self, text): (1]
self.pieces.append(self.verbatim and text or self.process(text)) (2]

o handle_data is called with only one argument, the text to process.
(2]

In the ancestor BaseHTMLProcessor, the handle_data method simply appended the text to the output

buffer, self.pieces. Here the logic is only slightly more complicated. If you're in the middle of a

<pre>...</pre> block, self.verbatim will be some value greater than 0, and you want to put the text

in the output buffer unaltered. Otherwise, you will call a separate method to process the substitutions, then pu

the result of that into the output buffer. In Python, this is a one-liner, using the and-or trick.
You're close to completely understanding Dialectizer. The only missing link is the nature of the text substitutions
themselves. If you know any Perl, you know that when complex text substitutions are required, the only real solutiot
is regular expressions. The classes later in dialect.py define a series of regular expressions that operate on the text
between the HTML tags. But you just had a whole chapter on regular expressions. You don't really want to slog
through regular expressions again, do you? God knows | don't. | think you've learned enough for one chapter.

8.9. Putting it all together

It's time to put everything you've learned so far to good use. | hope you were paying attention.

Example 8.20. The translate function, part 1

def translate(url, dialectName="chef"): (1]
import urllib (2]

Dive Into Python 111

sock = urllib.urlopen(url) (3]
htmlSource = sock.read()
sock.close()

© The translate function has an optional argument dialectName, which is a string that specifies
the dialect you'll be using. You'll see how this is used in a minute.

2] Hey, wait a minute, there's an import statement in this function! That's perfectly legal in Python.
You're used to seeing import statements at the top of a program, which means that the imported
module is available anywhere in the program. But you can also import modules within a function,
which means that the imported module is only available within the function. If you have a module that
is only ever used in one function, this is an easy way to make your code more modular. (When you find
that your weekend hack has turned into an 800-line work of art and decide to split it up into a dozen
reusable modules, you'll appreciate this.)

® Now you get the source of the given URL.

Example 8.21. The translate function, part 2: curiouser and curiouser

parserName = "%sDialectizer" % dialectName.capitalize() (1]
parserClass = globals()[parserName] (2]
parser = parserClass() (3]

o capitalize is a string method you haven't seen before; it simply capitalizes the first letter of a string and
forces everything else to lowercase. Combined with some string formatting, you've taken the name of a dialec
and transformed it into the name of the corresponding Dialectizer class. If dialectName is the string
‘chef', parserName will be the string 'ChefDialectizer'.

® You have the name of a class as a string (parserName), and you have the global namespace as a dictionary
(globals()). Combined, you can get a reference to the class which the string names. (Remember, classes are
objects, and they can be assigned to variables just like any other object.) If parserName is the string
'‘ChefDialectizer', parserClass will be the class ChefDialectizer.

© Finally, you have a class object (parserClass), and you want an instance of the class. Well, you already
know how to do that: call the class like a function. The fact that the class is being stored in a local variable
makes absolutely no difference; you just call the local variable like a function, and out pops an instance of the
class. If parserClass is the class ChefDialectizer, parser will be an instance of the class
ChefDialectizer.

Why bother? After all, there are only 3 Dialectizer classes; why not just use a case statement? (Well, there's no

case statement in Python, but why not just use a series of if statements?) One reason: extensibility. The

translate function has absolutely no idea how many Dialectizer classes you've defined. Imagine if you defined a

new FooDialectizer tomorrow; translate would work by passing 'foo' as the dialectName.

Even better, imagine putting FooDialectizer in a separate module, and importing it with from module
import. You've already seen that this includes it in globals(), so translate would still work without
modification, even though FooDialectizer was in a separate file.

Now imagine that the name of the dialect is coming from somewhere outside the program, maybe from a database
from a user—inputted value on a form. You can use any number of server—side Python scripting architectures to
dynamically generate web pages; this function could take a URL and a dialect name (both strings) in the query strin
of a web page request, and output the "translated” web page.

Finally, imagine a Dialectizer framework with a plug—in architecture. You could put each Dialectizer class

in a separate file, leaving only the translate function in dialect.py. Assuming a consistent naming scheme,

the translate function could dynamic import the appropiate class from the appropriate file, given nothing but the
dialect name. (You haven't seen dynamic importing yet, but | promise to cover it in a later chapter.) To add a new

Dive Into Python 112

dialect, you would simply add an appropriately—named file in the plug-ins directory (like foodialect.py which
contains the FooDialectizer class). Calling the translate function with the dialect name ‘foo’ would find
the module foodialect.py, import the class FooDialectizer, and away you go.

Example 8.22. The translate function, part 3

parser.feed(htmlSource) (1]
parser.close() (2]
return parser.output() (3]

Q@ After all that imagining, this is going to seem pretty boring, but the feed function is what does the entire
transformation. You had the entire HTML source in a single string, so you only had to call feed once.
However, you can call feed as often as you want, and the parser will just keep parsing. So if you were worried
about memory usage (or you knew you were going to be dealing with very large HTML pages), you could set
this up in a loop, where you read a few bytes of HTML and fed it to the parser. The result would be the same.

® Because feed maintains an internal buffer, you should always call the parser's close method when you're
done (even if you fed it all at once, like you did). Otherwise you may find that your output is missing the last
few bytes.

® Remember, output is the function you defined on BaseHTMLProcessor that joins all the pieces of output
you've buffered and returns them in a single string.

And just like that, you've "translated" a web page, given nothing but a URL and the name of a dialect.

Further reading

* You thought | was kidding about the server—side scripting idea. So did I, until | found this web—based
dialectizer (http://rinkworks.com/dialect/). Unfortunately, source code does not appear to be available.

8.10. Summary

Python provides you with a powerful tool, sgmllib.py, to manipulate HTML by turning its structure into an object
model. You can use this tool in many different ways.

» parsing the HTML looking for something specific

 aggregating the results, like the URL lister

« altering the structure along the way, like the attribute quoter

« transforming the HTML into something else by manipulating the text while leaving the tags alone, like the
Dialectizer

Along with these examples, you should be comfortable doing all of the following things:

 Using locals() and globals() to access namespaces
» Formatting strings using dictionary—based substitutions

M The technical term for a parser like SGMLParser is a consumer: it consumes HTML and breaks it down.
Presumably, the name feed was chosen to fit into the whole "consumer" motif. Personally, it makes me think of an
exhibit in the zoo where there's just a dark cage with no trees or plants or evidence of life of any kind, but if you stat
perfectly still and look really closely you can make out two beady eyes staring back at you from the far left corner, b
you convince yourself that that's just your mind playing tricks on you, and the only way you can tell that the whole
thing isn't just an empty cage is a small innocuous sign on the railing that reads, "Do not feed the parser." But mayk

Dive Into Python 113

http://rinkworks.com/dialect/

that's just me. In any event, it's an interesting mental image.

I The reason Python is better at lists than strings is that lists are mutable but strings are immutable. This means th
appending to a list just adds the element and updates the index. Since strings can not be changed after they are cr
code like s = s + newpiece will create an entirely new string out of the concatenation of the original and the

new piece, then throw away the original string. This involves a lot of expensive memory management, and the amo
of effort involved increases as the string gets longer, so doing s = s + newpiece in a loop is deadly. In technical
terms, appending n items to a list is O(n), while appending n items to a string i€)O(n

Bl'| don't get out much.

Al right, it's not that common a question. It's not up there with "What editor should | use to write Python code?"
(answer: Emacs) or "Is Python better or worse than Perl?" (answer: "Perl is worse than Python because people wal
it worse." —Larry Wall, 10/14/1998) But questions about HTML processing pop up in one form or another about onc
a month, and among those questions, this is a popular one.

Dive Into Python 114

Chapter 9. XML Processing

9.1. Diving in

These next two chapters are about XML processing in Python. It would be helpful if you already knew what an XML
document looks like, that it's made up of structured tags to form a hierarchy of elements, and so on. If this doesn't
make sense to you, there are many XML tutorials
(http://directory.google.com/Top/Computers/Data_Formats/Markup_Languages/XML/Resources/FAQs,_Help,_and.
that can explain the basics.

If you're not particularly interested in XML, you should still read these chapters, which cover important topics like
Python packages, Unicode, command line arguments, and how to use getattr for method dispatching.

Being a philosophy major is not required, although if you have ever had the misfortune of being subjected to the
writings of Immanuel Kant, you will appreciate the example program a lot more than if you majored in something
useful, like computer science.

There are two basic ways to work with XML. One is called SAX ("Simple API for XML"), and it works by reading

the XML a little bit at a time and calling a method for each element it finds. (If you read Chapter 8, HTML
Processing, this should sound familiar, because that's how the sgmllib module works.) The other is called DOM
("Document Object Model"), and it works by reading in the entire XML document at once and creating an internal
representation of it using native Python classes linked in a tree structure. Python has standard modules for both kin
of parsing, but this chapter will only deal with using the DOM.

The following is a complete Python program which generates pseudo—-random output based on a context—free
grammar defined in an XML format. Don't worry yet if you don't understand what that means; you'll examine both th
program's input and its output in more depth throughout these next two chapters.

Example 9.1. kgp.py

If you have not already done so, you can download this and other examples
(http://diveintopython.org/download/diveintopython—examples—5.4.zip) used in this book.

"""Kant Generator for Python
Generates mock philosophy based on a context-free grammar

Usage: python kgp.py [options] [source]

Options:
-g ..., ——grammar=... use specified grammar file or URL
-h, ——help show this help
—-d show debugging information while parsing
Examples:
kgp.py generates several paragraphs of Kantian philosophy

kgp.py —g husserl.xml generates several paragraphs of Husserl
kpg.py "<xref id="paragraph'/>" generates a paragraph of Kant
kgp.py template.xml reads from template.xml to decide what to generate

from xml.dom import minidom
import random

import toolbox

import sys

Dive Into Python 115

http://directory.google.com/Top/Computers/Data_Formats/Markup_Languages/XML/Resources/FAQs,_Help,_and_Tutorials/
http://diveintopython.org/download/diveintopython-examples-5.4.zip

import getopt
_debug=0
class NoSourceError(Exception): pass

class KantGenerator:
""generates mock philosophy based on a context-free grammar™"

def __init__(self, grammar, source=None):
self.loadGrammar(grammar)
self.loadSource(source and source or self.getDefaultSource())
self.refresh()

def _load(self, source):
""load XML input source, return parsed XML document

—a URL of a remote XML file ("http://diveintopython.org/kant.xml")

- a filename of a local XML file ("~/diveintopython/common/py/kant.xml")
- standard input ("-"

- the actual XML document, as a string

sock = toolbox.openAnything(source)

xmldoc = minidom.parse(sock).documentElement

sock.close()

return xmldoc

def loadGrammar(self, grammar):
""load context-free grammar™"
self.grammar = self._load(grammar)
self.refs = {}
for ref in self.grammar.getElementsByTagName("ref"):
self.refs[ref.attributes["id"].value] = ref

def loadSource(self, source):
""load source
self.source = self._load(source)

def getDefaultSource(self):
"""guess default source of the current grammar

The default source will be one of the <ref>s that is not
cross—referenced. This sounds complicated but it's not.
Example: The default source for kant.xml is
"<xref id='section'/>", because 'section’ is the one <ref>
that is not <xref>'d anywhere in the grammar.
In most grammars, the default source will produce the
longest (and most interesting) output.
xrefs = {}
for xref in self.grammar.getElementsByTagName("xref"):
xrefs[xref.attributes["id"].value] = 1
xrefs = xrefs.keys()
standaloneXrefs = [e for e in self.refs.keys() if e not in xrefs]
if not standaloneXrefs:
raise NoSourceError, "can't guess source, and no source specified"
return '<xref id="%s"/>" % random.choice(standaloneXrefs)

def reset(self):
"""reset parser
self.pieces =[]
self.capitalizeNextWord = 0

Dive Into Python 116

def refresh(self):
""reset output buffer, re—parse entire source file, and return output

Since parsing involves a good deal of randomness, this is an

easy way to get new output without having to reload a grammar file
each time.

self.reset()

self.parse(self.source)

return self.output()

def output(self):

return ".join(self.pieces)

def randomChildElement(self, node):
"""choose a random child element of a hode

This is a utility method used by do_xref and do_choice.

choices = [e for e in node.childNodes
if e.nodeType == e. ELEMENT_NODE]

chosen = random.choice(choices)
if _debug:

sys.stderr.write('%s available choices: %s\n' % \

(len(choices), [e.toxml() for e in choices]))

sys.stderr.write('Chosen: %s\n' % chosen.toxml())

return chosen

def parse(self, node):
""" parse a single XML node

A parsed XML document (from minidom.parse) is a tree of nodes

of various types. Each node is represented by an instance of the
corresponding Python class (Element for a tag, Text for

text data, Document for the top—level document). The following
statement constructs the name of a class method based on the type
of node we're parsing ("parse_Element" for an Element node,
"parse_Text" for a Text node, etc.) and then calls the method.
parseMethod = getattr(self, "parse_%s" % node.__class_ .. _name_)
parseMethod(node)

def parse_Document(self, node):
""parse the document node

The document node by itself isn't interesting (to us), but
its only child, node.documentElement, is: it's the root node
of the grammar.

self.parse(node.documentElement)

def parse_Text(self, node):
""" parse a text node

The text of a text node is usually added to the output buffer
verbatim. The one exception is that <p class='sentence'> sets
a flag to capitalize the first letter of the next word. If
that flag is set, we capitalize the text and reset the flag.
text = node.data
if self.capitalizeNextWord:

self.pieces.append(text[0].upper())

Dive Into Python 117

self.pieces.append(text[1:])

self.capitalizeNextWord = 0
else:

self.pieces.append(text)

def parse_Element(self, node):
""" parse an element

An XML element corresponds to an actual tag in the source:
<xref id="...">, <p chance="...">, <choice>, etc.

Each element type is handled in its own method. Like we did in
parse(), we construct a method name based on the name of the
element ("do_xref" for an <xref> tag, etc.) and

call the method.

handlerMethod = getattr(self, "do_%s" % node.tagName)
handlerMethod(node)

def parse_Comment(self, node):
"""parse a comment

The grammar can contain XML comments, but we ignore them

pass

def do_xref(self, node):
""handle <xref id="..."> tag

An <xref id="..."> tag is a cross—reference to a <ref id="...">

tag. <xref id='sentence'/> evaluates to a randomly chosen child of

<ref id="sentence'>.

id = node.attributes["id"].value
self.parse(self.randomChildElement(self.refs[id]))

def do_p(self, node):
""" handle <p> tag

The <p> tag is the core of the grammar. It can contain almost
anything: freeform text, <choice> tags, <xref> tags, even other
<p>tags. If a "class='sentence™ attribute is found, a flag
is set and the next word will be capitalized. If a "chance="X"
attribute is found, there is an X% chance that the tag will be
evaluated (and therefore a (100-X)% chance that it will be
completely ignored)
keys = node.attributes.keys()
if "class” in keys:

if node.attributes["class"].value == "sentence":

self.capitalizeNextWord = 1

if "chance" in keys:

chance = int(node.attributes["chance"].value)

doit = (chance > random.randrange(100))
else:

doit=1
if doit:

for child in node.childNodes: self.parse(child)

def do_choice(self, node):
""" handle <choice> tag

A <choice> tag contains one or more <p> tags. One <p> tag
is chosen at random and evaluated; the rest are ignored.

Dive Into Python

118

self.parse(self.randomChildElement(node))

def usage():
print__doc___

def main(argv):
grammar = "kant.xml"
try:
opts, args = getopt.getopt(argv, "hg:d", [*help”, "grammar="])
except getopt.GetoptError:
usage()
sys.exit(2)
for opt, arg in opts:
if opt in ("—h", "——help"):

usage()
sys.exit()
elif opt == '-d"
global _debug
_debug=1
elif optin ("-g", "-—grammar"):

grammar = arg
source = "".join(args)

k = KantGenerator(grammar, source)
print k.output()

if _name__ =="_ main__"
main(sys.argv[1:])

Example 9.2. toolbox.py

""Miscellaneous utility functions

def openAnything(source):
"""URI, filename, or string ——> stream

This function lets you define parsers that take any input source
(URL, pathname to local or network file, or actual data as a string)
and deal with it in a uniform manner. Returned object is guaranteed
to have all the basic stdio read methods (read, readline, readlines).
Just .close() the object when you're done with it.

Examples:
>>> from xml.dom import minidom
>>> sock = openAnything("http://localhost/kant.xml")
>>> doc = minidom.parse(sock)
>>> sock.close()
>>> sock = openAnything("c:\\inetpub\\wwwroot\\kant.xml")
>>> doc = minidom.parse(sock)
>>> sock.close()
>>> sock = openAnything("<ref id='conjunction'><text>and</text><text>or</text></ref>")
>>> doc = minidom.parse(sock)
>>> sock.close()
if hasattr(source, "read"):
return source

if source =="'-"
import sys

Dive Into Python 119

return sys.stdin

try to open with urllib (if source is http, ftp, or file URL)

import urllib

try:

return urllib.urlopen(source)

except (IOError, OSError):
pass

try to open with native open function (if source is pathname)
try:

return open(source)
except (IOError, OSError):

pass

treat source as string
import StringlO
return StringlO.StringlO(str(source))

Run the program kgp.py by itself, and it will parse the default XML-based grammar, in kant.xml, and print

several paragraphs worth of philosophy in the style of Immanuel Kant.

Example 9.3. Sample output of kgp.py

[you@Ilocalhost kgp]$ python kgp.py

As is shown in the writings of Hume, our a priori concepts, in
reference to ends, abstract from all content of knowledge; in the study
of space, the discipline of human reason, in accordance with the
principles of philosophy, is the clue to the discovery of the
Transcendental Deduction. The transcendental aesthetic, in all
theoretical sciences, occupies part of the sphere of human reason
concerning the existence of our ideas in general; still, the
never—ending regress in the series of empirical conditions constitutes
the whole content for the transcendental unity of apperception. What
we have alone been able to show is that, even as this relates to the
architectonic of human reason, the Ideal may not contradict itself, but
it is still possible that it may be in contradictions with the
employment of the pure employment of our hypothetical judgements, but
natural causes (and | assert that this is the case) prove the validity
of the discipline of pure reason. As we have already seen, time (and
it is obvious that this is true) proves the validity of time, and the
architectonic of human reason, in the full sense of these terms,
abstracts from all content of knowledge. | assert, in the case of the
discipline of practical reason, that the Antinomies are just as
necessary as natural causes, since knowledge of the phenomena is a
posteriori.

The discipline of human reason, as | have elsewhere shown, is by
its very nature contradictory, but our ideas exclude the possibility of
the Antinomies. We can deduce that, on the contrary, the pure
employment of philosophy, on the contrary, is by its very nature
contradictory, but our sense perceptions are a representation of, in
the case of space, metaphysics. The thing in itself is a
representation of philosophy. Applied logic is the clue to the
discovery of natural causes. However, what we have alone been able to
show is that our ideas, in other words, should only be used as a canon
for the Ideal, because of our necessary ignorance of the conditions.

[...snip...]

Dive Into Python

120

This is, of course, complete gibberish. Well, not complete gibberish. It is syntactically and grammatically correct
(although very verbose —— Kant wasn't what you would call a get—-to—the—point kind of guy). Some of it may actually
be true (or at least the sort of thing that Kant would have agreed with), some of it is blatantly false, and most of it is
simply incoherent. But all of it is in the style of Immanuel Kant.

Let me repeat that this is much, much funnier if you are now or have ever been a philosophy major.

The interesting thing about this program is that there is nothing Kant—specific about it. All the content in the previou
example was derived from the grammar file, kant.xml. If you tell the program to use a different grammar file
(which you can specify on the command line), the output will be completely different.

Example 9.4. Simpler output from kgp.py

[you@localhost kgp]$ python kgp.py —g binary.xml
00101001
[you@Ilocalhost kgp]$ python kgp.py —g binary.xml
10110100

You will take a closer look at the structure of the grammar file later in this chapter. For now, all you need to know is
that the grammar file defines the structure of the output, and the kgp.py program reads through the grammar and
makes random decisions about which words to plug in where.

9.2. Packages

Actually parsing an XML document is very simple: one line of code. However, before you get to that line of code, yo
need to take a short detour to talk about packages.

Example 9.5. Loading an XML document (a sneak peek)

>>> from xml.dom import minidom (1]
>>> xmldoc = minidom.parse('~/diveintopython/common/py/kgp/binary.xml’)

Q@ Thisisa syntax you haven't seen before. It looks almost like the from module import you know and

love, but the "." gives it away as something above and beyond a simple import. In fact, xml is what is

known as a package, dom is a nested package within xml, and minidom is a module within xml.dom.
That sounds complicated, but it's really not. Looking at the actual implementation may help. Packages are little mor
than directories of modules; nested packages are subdirectories. The modules within a package (or a nested packe
are still just .py files, like always, except that they're in a subdirectory instead of the main lib/ directory of your

Python installation.

Example 9.6. File layout of a package

Python21/ root Python installation (home of the executable)
|
+——lib/ library directory (home of the standard library modules)
|
+—=xml/ xml package (really just a directory with other stuff in it)

+——sax/ xml.sax package (again, just a directory)

+-—dom/ xml.dom package (contains minidom.py)

I
Dive Into Python 121

+——parsers/ xml.parsers package (used internally)

So when you say from xml.dom import minidom, Python figures out that that means "look in the xml

directory for a dom directory, and look in that for the minidom module, and import it as minidom". But Python is
even smarter than that; not only can you import entire modules contained within a package, you can selectively imp
specific classes or functions from a module contained within a package. You can also import the package itself as ¢
module. The syntax is all the same; Python figures out what you mean based on the file layout of the package, and
automatically does the right thing.

Example 9.7. Packages are modules, too

>>> from xml.dom import minidom (1]

>>> minidom

<module 'xml.dom.minidom' from 'C:\Python21\lib\xmI\dom\minidom.pyc'>
>>> minidom.Element

<class xml.dom.minidom.Element at 01095744>

>>> from xml.dom.minidom import Element

>>> Element

<class xml.dom.minidom.Element at 01095744>

>>> minidom.Element

<class xml.dom.minidom.Element at 01095744>

>>> from xml import dom

>>> dom

<module 'xml.dom' from 'C:\Python21\lib\xmN\dom__init__.pyc'>
>>> import xml

>>> xml

<module 'xml' from 'C:\Python21\lib\xmI__init__.pyc'>

Q Here you're importing a module (minidom) from a nested package (xml.dom). The result is that
minidom is imported into your namespace, and in order to reference classes within the minidom
module (like Element), you need to preface them with the module name.

O Here you are importing a class (Element) from a module (minidom) from a nested package
(xml.dom). The result is that Element is imported directly into your namespace. Note that this does
not interfere with the previous import; the Element class can now be referenced in two ways (but it's all
still the same class).

® Here you are importing the dom package (a nested package of xml) as a module in and of itself. Any

level of a package can be treated as a module, as you'll see in a moment. It can even have its own

attributes and methods, just the modules you've seen before.
Q@ Here you are importing the root level xml package as a module.
So how can a package (which is just a directory on disk) be imported and treated as a module (which is always a fil
on disk)? The answer is the magical __init__.py file. You see, packages are not simply directories; they are
directories with a specific file, __init__.py, inside. This file defines the attributes and methods of the package.
For instance, xml.dom contains a Node class, which is defined in xml/dom/__init__.py. When you import a
package as a module (like dom from xml), you're really importing its __init__.py file.

A package is a directory with'the special __init__.py file init. The __init__.py file defines the attributes

and methods of the package. It doesn't need to define anything; it can just be an empty file, but it has to exist. But i
__init__.py doesn't exist, the directory is just a directory, not a package, and it can't be imported or contain
modules or nested packages.

So why bother with packages? Well, they provide a way to logically group related modules. Instead of having an xir
package with sax and dom packages inside, the authors could have chosen to put all the sax functionality in
xmisax.py and all the dom functionality in xmldom.py, or even put all of it in a single module. But that would

Dive Into Python 122

have been unwieldy (as of this writing, the XML package has over 3000 lines of code) and difficult to manage
(separate source files mean multiple people can work on different areas simultaneously).

If you ever find yourself writing a large subsystem in Python (or, more likely, when you realize that your small
subsystem has grown into a large one), invest some time designing a good package architecture. It's one of the ma
things Python is good at, so take advantage of it.

9.3. Parsing XML

As | was saying, actually parsing an XML document is very simple: one line of code. Where you go from there is up
to you.

Example 9.8. Loading an XML document (for real this time)

>>> from xml.dom import minidom
>>> xmldoc = minidom.parse('~/diveintopython/common/py/kgp/binary.xml’)
>>> xmldoc
<xml.dom.minidom.Document instance at 010BE87C>
>>> print xmldoc.toxml()
<?xml version="1.0" ?>
<grammar>
<ref id="bit">
<p>0</p>
<p>1</p>
<[ref>
<ref id="byte">
<p><xref id="bit"/><xref id="bit"/><xref id="bit"/><xref id="bit"/>\
<xref id="bit"/><xref id="bit"/><xref id="bit"/><xref id="bit"/></p>
<[ref>
</grammar>

o o0

9 As you saw in the previous section, this imports the minidom module from the xml.dom package.

® Here is the one line of code that does all the work: minidom.parse takes one argument and returns a parsed
representation of the XML document. The argument can be many things; in this case, it's simply a filename of
an XML document on my local disk. (To follow along, you'll need to change the path to point to your
downloaded examples directory.) But you can also pass a file object, or even a file-like object. You'll take
advantage of this flexibility later in this chapter.

® The object returned from minidom.parse is a Document object, a descendant of the Node class. This
Document object is the root level of a complex tree-like structure of interlocking Python objects that
completely represent the XML document you passed to minidom.parse.

@ toxmlis a method of the Node class (and is therefore available on the Document object you got from
minidom.parse). toxml prints out the XML that this Node represents. For the Document node, this
prints out the entire XML document.

Now that you have an XML document in memory, you can start traversing through it.

Example 9.9. Getting child nodes

>>> xmldoc.childNodes (1]
[<DOM Element: grammar at 17538908>]
>>> xmldoc.childNodes[0]

<DOM Element: grammar at 17538908>
>>> xmldoc.firstChild

<DOM Element: grammar at 17538908>

Dive Into Python 123

® Every Node has a childNodes attribute, which is a list of the Node objects. A Document always has only
one child node, the root element of the XML document (in this case, the grammar element).

® 1o get the first (and in this case, the only) child node, just use regular list syntax. Remember, there is nothing
special going on here; this is just a regular Python list of regular Python objects.

® Since getting the first child node of a node is a useful and common activity, the Node class has a
firstChild attribute, which is synonymous with childNodes[0]. (There is also a lastChild
attribute, which is synonymous with childNodes[-1].)

Example 9.10. toxml works on any node

>>> grammarNode = xmldoc.firstChild
>>> print grammarNode.toxml()
<grammar>
<ref id="bit">
<p>0</p>
<p>1</p>
<[ref>
<ref id="byte">
<p><xref id="bit"/><xref id="bit"/><xref id="bit"/><xref id="bit"/>\
<xref id="bit"/><xref id="bit"/><xref id="bit"/><xref id="bit"/></p>
<[ref>
</grammar>

@ Since the toxml method is defined in the Node class, it is available on any XML node, not just the
Document element.

Example 9.11. Child nodes can be text

>>> grammarNode.childNodes 1]

[<DOM Text node "\n">, <DOM Element: ref at 17533332>, \

<DOM Text node "\n">, <DOM Element: ref at 17549660>, <DOM Text node "\n">]
>>> print grammarNode.firstChild.toxml() (2]

>>> print grammarNode.childNodes[1].toxml() (3]
<ref id="bit">

<p>0</p>

<p>1</p>
<[ref>
>>> print grammarNode.childNodes[3].toxml() (4
<ref id="byte">

<p><xref id="bit"/><xref id="bit"/><xref id="bit"/><xref id="bit"/>\
<xref id="bit"/><xref id="bit"/><xref id="bit"/><xref id="bit"/></p>
<[ref>
>>> print grammarNode.lastChild.toxml() (5]

1 Looking at the XML in binary.xml, you might think that the grammar has only two child nodes, the two
ref elements. But you're missing something: the carriage returns! After the '<grammar>' and before the
first '<ref>' is a carriage return, and this text counts as a child node of the grammar element. Similarly,
there is a carriage return after each '</ref>'; these also count as child nodes. So grammar.childNodes
is actually a list of 5 objects: 3 Text objects and 2 Element objects.

® The first child is a Text object representing the carriage return after the '<grammar>' tag and before the
first '<ref>' tag.

Dive Into Python 124

The second child is an Element object representing the first ref element.
The fourth child is an Element object representing the second ref element.

The last child is a Text object representing the carriage return after the '</ref>' end tag and before the
'</grammar>' end tag.

@00

Example 9.12. Drilling down all the way to text

>>> grammarNode

<DOM Element: grammar at 19167148>

>>> refNode = grammarNode.childNodes[1] (1]
>>> refNode

<DOM Element: ref at 17987740>

>>> refNode.childNodes (2]
[<DOM Text node "\n">, <DOM Text node " ">, <DOM Element: p at 19315844>, \
<DOM Text node "\n">, <DOM Text node " ">, \

<DOM Element: p at 19462036>, <DOM Text node "\n">]
>>> pNode = refNode.childNodes|[2]

>>> pNode

<DOM Element: p at 19315844>

>>> print pNode.toxml() (3]
<p>0</p>

>>> pNode.firstChild (4
<DOM Text node "0">

>>> pNode.firstChild.data (5
u'o’

9 As you saw in the previous example, the first ref element is
grammarNode.childNodes[1], since childNodes[0] is a Text node for the carriage
return.

® The ref element has its own set of child nodes, one for the carriage return, a separate one
for the spaces, one for the p element, and so forth.

You can even use the toxml method here, deeply nested within the document.

The p element has only one child node (you can't tell that from this example, but look at

pNode.childNodes if you don't believe me), and it is a Text node for the single
character '0'.

© The .data attribute of a Text node gives you the actual string that the text node
represents. But what is that 'u' in front of the string? The answer to that deserves its own
section.

9.4. Unicode

(-]

Unicode is a system to represent characters from all the world's different languages. When Python parses an XML
document, all data is stored in memory as unicode.

You'll get to all that in a minute, but first, some background.

Historical note. Before unicode, there were separate character encoding systems for each language, each using the
same numbers (0-255) to represent that language's characters. Some languages (like Russian) have multiple
conflicting standards about how to represent the same characters; other languages (like Japanese) have so many
characters that they require multiple-byte character sets. Exchanging documents between systems was difficult
because there was no way for a computer to tell for certain which character encoding scheme the document author
used; the computer only saw numbers, and the numbers could mean different things. Then think about trying to sto
these documents in the same place (like in the same database table); you would need to store the character encod
alongside each piece of text, and make sure to pass it around whenever you passed the text around. Then think ab

Dive Into Python 125

multilingual documents, with characters from multiple languages in the same document. (They typically used escap
codes to switch modes; poof, you're in Russian koi8-r mode, so character 241 means this; poof, now you're in Mac
Greek mode, so character 241 means something else. And so on.) These are the problems which unicode was des
to solve.

To solve these problems, unicode represents each character as a 2-byte number, from ({F{(Eﬁﬁﬁs&byte

number represents a unique character used in at least one of the world's languages. (Characters that are used in
multiple languages have the same numeric code.) There is exactly 1 number per character, and exactly 1 charactel
number. Unicode data is never ambiguous.

Of course, there is still the matter of all these legacy encoding systems. 7-bit ASCII, for instance, which stores
English characters as numbers ranging from 0 to 127. (65 is capital "A", 97 is lowercase "a", and so forth.) English
has a very simple alphabet, so it can be completely expressed in 7-bit ASCIIl. Western European languages like
French, Spanish, and German all use an encoding system called ISO-8859-1 (also called "latin—1"), which uses th
7-bit ASCII characters for the numbers 0 through 127, but then extends into the 128-255 range for characters like
n-with—a-tilde—over-it (241), and u-with—two—dots—over-it (252). And unicode uses the same characters as 7-bit
ASCII for 0 through 127, and the same characters as ISO-8859-1 for 128 through 255, and then extends from ther
into characters for other languages with the remaining numbers, 256 through 65535.

When dealing with unicode data, you may at some point need to convert the data back into one of these other lega
encoding systems. For instance, to integrate with some other computer system which expects its data in a specific
1-byte encoding scheme, or to print it to a non—unicode—aware terminal or printer. Or to store it in an XML docume
which explicitly specifies the encoding scheme.

And on that note, let's get back to Python.

Python has had unicode support throughout the language since version 2.0. The XML package uses unicode to sto

all parsed XML data, but you can use unicode anywhere.

Example 9.13. Introducing unicode

>>>s = u'Dive in' (1]
>>> 5

u'Dive in'

>>> print s (2]
Dive in

©® 7o create a unicode string instead of a regular ASCII string, add the letter "u" before the string. Note that this
particular string doesn't have any non—ASCII characters. That's fine; unicode is a superset of ASCII (a very
large superset at that), so any regular ASCII string can also be stored as unicode.

® \When printing a string, Python will attempt to convert it to your default encoding, which is usually ASCII.
(More on this in a minute.) Since this unicode string is made up of characters that are also ASCII characters,
printing it has the same result as printing a normal ASCII string; the conversion is seamless, and if you didn't
know that s was a unicode string, you'd never notice the difference.

Example 9.14. Storing non—ASCII characters

>>> s = u'La Pe\xfla' (1]
>>> print s (2]
Traceback (innermost last):
File "<interactive input>", line 1, in ?
UnicodeError: ASCII encoding error: ordinal not in range(128)
>>> print s.encode('latin-1")

Dive Into Python 126

La Pefa

Q® Thereal advantage of unicode, of course, is its ability to store non—ASCII characters, like the Spanish "fi" (n
with a tilde over it). The unicode character code for the tilde—n is Oxfl in hexadecimal (241 in decimal), which
you can type like this: \xf1.

® Remember I said that the print function attempts to convert a unicode string to ASCII so it can print it? Well,
that's not going to work here, because your unicode string contains non—ASCII characters, so Python raises ¢
UnicodeError error.

® Here's where the conversion—from-unicode-to—other-encoding—schemes comes in. s is a unicode string, bu
print can only print a regular string. To solve this problem, you call the encode method, available on every
unicode string, to convert the unicode string to a regular string in the given encoding scheme, which you pass
a parameter. In this case, you're using latin—1 (also known as iso—8859-1), which includes the tilde-n
(whereas the default ASCII encoding scheme did not, since it only includes characters numbered 0 through
127).

Remember | said Python usually converted unicode to ASCII whenever it needed to make a regular string out of a

unicode string? Well, this default encoding scheme is an option which you can customize.

Example 9.15. sitecustomize.py

sitecustomize.py 1]
this file can be anywhere in your Python path,

but it usually goes in ${pythondir}/lib/site—packages/
import sys

sys.setdefaultencoding('iso—8859-1") (2]

o sitecustomize.py is a special script; Python will try to import it on startup, so any code in it
will be run automatically. As the comment mentions, it can go anywhere (as long as import can
find it), but it usually goes in the site—packages directory within your Python lib directory.

(2 setdefaultencoding function sets, well, the default encoding. This is the encoding scheme
that Python will try to use whenever it needs to auto—coerce a unicode string into a regular string.

Example 9.16. Effects of setting the default encoding

>>> import sys

>>> sys.getdefaultencoding() (1]
'iso—8859-1"

>>> s = u'La Pe\xfla'

>>> print s (2]
La Pefia

Q@ This example assumes that you have made the changes listed in the previous example to your
sitecustomize.py file, and restarted Python. If your default encoding still says 'ascii’, you didn't set
up your sitecustomize.py properly, or you didn't restart Python. The default encoding can only be
changed during Python startup; you can't change it later. (Due to some wacky programming tricks that | won't
get into right now, you can't even call sys.setdefaultencoding after Python has started up. Dig into
site.py and search for "setdefaultencoding” to find out how.)

® Now that the default encoding scheme includes all the characters you use in your string, Python has no probls
auto—coercing the string and printing it.

Example 9.17. Specifying encoding in .py files

Dive Into Python 127

If you are going to be storing non—ASCII strings within your Python code, you'll need to specify the encoding of eac
individual .py file by putting an encoding declaration at the top of each file. This declaration defines the .py file to
be UTF-8:

#!/usr/bin/env python
—*— coding: UTF-8 —*-

Now, what about XML? Well, every XML document is in a specific encoding. Again, ISO-8859-1 is a popular

encoding for data in Western European languages. KOI8-R is popular for Russian texts. The encoding, if specified.
in the header of the XML document.

Example 9.18. russiansample.xml

<?xml version="1.0" encoding="koi8-r"?> (1]
<preface>
<title> @548A;>285</title> (2]
</preface>

Q@ Thisisa sample extract from a real Russian XML document; it's part of a Russian translation of this
very book. Note the encoding, koi8-r, specified in the header.

® These are Cyrillic characters which, as far as | know, spell the Russian word for "Preface". If you open
this file in a regular text editor, the characters will most likely like gibberish, because they're encoded
using the koi8-r encoding scheme, but they're being displayed in iso—8859-1.

Example 9.19. Parsing russiansample.xml

>>> from xml.dom import minidom

>>> xmldoc = minidom.parse(‘russiansample.xml’) (1]
>>> title = xmldoc.getElementsByTagName('title")[0].firstChild.data
>>> title (2]

u'\u041A\u0440\u0435\u0434\u0438\u0441\u043b\u043e\u0432\u0438\u0435'
>>> print title (3]
Traceback (innermost last):

File "<interactive input>", line 1, in ?
UnicodeError: ASCII encoding error: ordinal not in range(128)
>>> convertedtitle = title.encode('koi8-r')
>>> convertedtitle
"\xfO\xd2\xc5\xc4\xc9\xd3\xcc\xcfixd 7\xc9\xc5'
>>> print convertedtitle (5]
@548A;>285

9 'm assuming here that you saved the previous example as russiansample.xml in the current
directory. | am also, for the sake of completeness, assuming that you've changed your default
encoding back to 'ascii' by removing your sitecustomize.py file, or at least
commenting out the setdefaultencoding line.

@ Note that the text data of the title tag (now in the title variable, thanks to that long
concatenation of Python functions which | hastily skipped over and, annoyingly, won't explain
until the next section) —— the text data inside the XML document's title element is stored in
unicode.

© Printing the title is not possible, because this unicode string contains non—ASCII characters, so
Python can't convert it to ASCII because that doesn't make sense.

® You can, however, explicitly convert it to koi8-r, in which case you get a (regular, not unicode)
string of single—byte characters (f0, d2, c5, and so forth) that are the koi8-r—encoded versions

Dive Into Python 128

of the characters in the original unicode string.

(5 Printing the koi8-r—encoded string will probably show gibberish on your screen, because your

Python IDE is interpreting those characters as iso—8859-1, not koi8-r. But at least they do

print. (And, if you look carefully, it's the same gibberish that you saw when you opened the

original XML document in a non—-unicode—aware text editor. Python converted it from koi8-r

into unicode when it parsed the XML document, and you've just converted it back.)
To sum up, unicode itself is a bit intimidating if you've never seen it before, but unicode data is really very easy to
handle in Python. If your XML documents are all 7—-bit ASCII (like the examples in this chapter), you will literally
never think about unicode. Python will convert the ASCII data in the XML documents into unicode while parsing, an
auto—coerce it back to ASCIl whenever necessary, and you'll never even notice. But if you need to deal with that in
other languages, Python is ready.

Further reading

 Unicode.org (http://www.unicode.org/) is the home page of the unicode standard, including a brief technical
introduction (http://www.unicode.org/standard/principles.html).

 Unicode Tutorial (http://www.reportlab.com/il8n/python_unicode_tutorial.html) has some more examples of
how to use Python's unicode functions, including how to force Python to coerce unicode into ASCII even
when it doesn't really want to.

* PEP 263 (http://www.python.org/peps/pep—0263.html) goes into more detail about how and when to define :
character encoding in your .py files.

9.5. Searching for elements

Traversing XML documents by stepping through each node can be tedious. If you're looking for something in
particular, buried deep within your XML document, there is a shortcut you can use to find it quickly:
getElementsByTagName.

For this section, you'll be using the binary.xml grammar file, which looks like this:

Example 9.20. binary.xml

<?xml version="1.0"?>
<IDOCTYPE grammar PUBLIC "-//diveintopython.org//DTD Kant Generator Pro v1.0//EN" "kgp.dtd">
<grammar>
<ref id="bit">

<p>0</p>

<p>1</p>
<[ref>
<ref id="byte">

<p><xref id="hit"/><xref id="bit"/><xref id="bit"/><xref id="bit"/>\
<xref id="bit"/><xref id="bit"/><xref id="bit"/><xref id="bit"/></p>
<[ref>
</grammar>

It has two refs, 'bit' and 'byte'. A bit is either a '0' or '1', and a byte is 8 bits.

Example 9.21. Introducing getElementsByTagName

>>> from xml.dom import minidom
>>> xmldoc = minidom.parse('binary.xml’)
>>> reflist = xmldoc.getElementsByTagName('ref') (1]

Dive Into Python 129

http://www.unicode.org/
http://www.unicode.org/standard/principles.html
http://www.reportlab.com/i18n/python_unicode_tutorial.html
http://www.python.org/peps/pep-0263.html

>>> reflist
[<DOM Element: ref at 136138108>, <DOM Element: ref at 136144292>]
>>> print reflist[0].toxml()
<ref id="bit">

<p>0</p>

<p>1</p>
<[ref>
>>> print reflist[1].toxml()
<ref id="byte">

<p><xref id="hit"/><xref id="bit"/><xref id="bit"/><xref id="bit"/>\
<xref id="bit"/><xref id="bit"/><xref id="bit"/><xref id="bit"/></p>
<[ref>

o getElementsByTagName takes one argument, the name of the element you wish to find. It
returns a list of Element objects, corresponding to the XML elements that have that name. In
this case, you find two ref elements.

Example 9.22. Every element is searchable

>>> firstref = reflist[0] 0
>>> print firstref.toxml()
<ref id="bit">

<p>0</p>

<p>1</p>
<[ref>
>>> plist = firstref.getElementsByTagName("p") (2]
>>> plist
[<DOM Element: p at 136140116>, <DOM Element: p at 136142172>]
>>> print plist[0].toxml() (3]
<p>0</p>
>>> print plist[1].toxml()
<p>1</p>

o Continuing from the previous example, the first object in your reflist is the 'bit' ref element.

® You can use the same getElementsByTagName method on this Element to find all the <p> elements
within the 'bit" ref element.

® Just as before, the getElementsByTagName method returns a list of all the elements it found. In this case,
you have two, one for each bit.

Example 9.23. Searching is actually recursive

>>> plist = xmldoc.getElementsByTagName("p") (1]

>>> plist

[<DOM Element: p at 136140116>, <DOM Element: p at 136142172>, <DOM Element: p at 136146124>]
>>> plist[0].toxml() (2]

'<p>0</p>'

>>> plist[1].toxml()

'<p>1</p>'

>>> plist[2].toxml() (3]

‘<p><xref id="bit"/><xref id="bit"/><xref id="bit"/><xref id="bit"/>\

<xref id="bit"/><xref id="bit"/><xref id="bit"/><xref id="bit"/></p>'

@ Note carefully the difference between this and the previous example. Previously, you were searching for p
elements within firstref, but here you are searching for p elements within xmldoc, the root-level object
that represents the entire XML document. This does find the p elements nested within the ref elements within
the root grammar element.

® The first two p elements are within the first ref (the 'bit" ref).

Dive Into Python 130

(3]

9.6.

XML elements can have one or more attributes, and it is incredibly simple to access them once you have parsed ar

The last p element is the one within the second ref (the 'byte'ref).

Accessing element attributes

XML document.

For this section, you'll be using the binary.xml grammar file that you saw in the previous section.

This section may be a littlee€onfusing, because of some overlapping terminology. Elements in an XML document
have attributes, and Python objects also have attributes. When you parse an XML document, you get a bunch of
Python objects that represent all the pieces of the XML document, and some of these Python objects represent
attributes of the XML elements. But the (Python) objects that represent the (XML) attributes also have (Python)
attributes, which are used to access various parts of the (XML) attribute that the object represents. | told you it was

confusing. | am open to suggestions on how to distinguish these more clearly.

Example 9.24. Accessing element attributes

>>> xmldoc = minidom.parse('binary.xml’)
>>> reflist = xmldoc.getElementsByTagName('ref')
>>> hitref = reflist[0]
>>> print bitref.toxml()
<ref id="bit">
<p>0</p>
<p>1</p>

<[ref>

>>> bitref.attributes 1]
<xml.dom.minidom.NamedNodeMap instance at 0x81e0c9c>
>>> bitref.attributes.keys()

[uid]

>>> bitref.attributes.values() (4]
[<xml.dom.minidom.Attr instance at 0x81d5044>]
>>> bitref.attributes["id"]

<xml.dom.minidom.Attr instance at 0x81d5044>

L~)

Each Element object has an attribute called attributes, which is a NamedNodeMap
object. This sounds scary, but it's not, because a NamedNodeMap is an object that acts like a
dictionary, so you already know how to use it.

Treating the NamedNodeMap as a dictionary, you can get a list of the names of the attributes of
this element by using attributes.keys(). This element has only one attribute, 'id'.

Attribute names, like all other text in an XML document, are stored in unicode.

Again treating the NamedNodeMap as a dictionary, you can get a list of the values of the
attributes by using attributes.values(). The values are themselves objects, of type
Attr. You'll see how to get useful information out of this object in the next example.

Still treating the NamedNodeMap as a dictionary, you can access an individual attribute by
name, using normal dictionary syntax. (Readers who have been paying extra—close attention will
already know how the NamedNodeMap class accomplishes this neat trick: by defining a
__getitem___ special method. Other readers can take comfort in the fact that they don't need to
understand how it works in order to use it effectively.)

Example 9.25. Accessing individual attributes

Dive Into Python

>>> g
<xml.dom.minidom.Attr instance at 0x81d5044>
>>> a.name

u'id'

>>>avalue @

u'bit'

Q TheAtr object completely represents a single XML attribute of a single XML element. The
name of the attribute (the same name as you used to find this object in the
bitref.attributes NamedNodeMap pseudo—dictionary) is stored in a.name.

® The actual text value of this XML attribute is stored in a.value.

Like a dictionary, attributeszof an XML element have no ordering. Attributes may happen to be listed in a certain
order in the original XML document, and the Attr objects may happen to be listed in a certain order when the XML
document is parsed into Python objects, but these orders are arbitrary and should carry no special meaning. You
should always access individual attributes by name, like the keys of a dictionary.

9.7. Seque

OK, that's it for the hard—core XML stuff. The next chapter will continue to use these same example programs, but
focus on other aspects that make the program more flexible: using streams for input processing, using getattr for
method dispatching, and using command-line flags to allow users to reconfigure the program without changing the
code.

Before moving on to the next chapter, you should be comfortable doing all of these things:

« Parsing XML documents using minidom, searching through the parsed document, and accessing arbitrary
element attributes and element children

« Organizing complex libraries into packages

« Converting unicode strings to different character encodings

B! This, sadly, is still an oversimplification. Unicode now has been extended to handle ancient Chinese, Korean, ant
Japanese texts, which had so many different characters that the 2—byte unicode system could not represent them &
But Python doesn't currently support that out of the box, and | don't know if there is a project afoot to add it. You've
reached the limits of my expertise, sorry.

Dive Into Python 132

Chapter 10. Scripts and Streams

10.1. Abstracting input sources

One of Python's greatest strengths is its dynamic binding, and one powerful use of dynamic binding is the file-like
object.

Many functions which require an input source could simply take a filename, go open the file for reading, read it, and
close it when they're done. But they don't. Instead, they take a file—like object.

In the simplest case, a file—like object is any object with a read method with an optional size parameter, which
returns a string. When called with no size parameter, it reads everything there is to read from the input source and
returns all the data as a single string. When called with a size parameter, it reads that much from the input source
and returns that much data; when called again, it picks up where it left off and returns the next chunk of data.

This is how reading from real files works; the difference is that you're not limiting yourself to real files. The input
source could be anything: a file on disk, a web page, even a hard—coded string. As long as you pass a file—like obje
to the function, and the function simply calls the object's read method, the function can handle any kind of input
source without specific code to handle each kind.

In case you were wondering how this relates to XML processing, minidom.parse is one such function which can
take a file—like object.

Example 10.1. Parsing XML from a file

>>> from xml.dom import minidom
>>> fsock = open('binary.xml’)
>>> xmldoc = minidom.parse(fsock)
>>> fsock.close()
>>> print xmldoc.toxml()
<?xml version="1.0" ?>
<grammar>
<ref id="bit">

<p>0</p>

<p>1</p>
<[ref>
<ref id="byte">

<p><xref id="bit"/><xref id="bit"/><xref id="bit"/><xref id="bit"/>\
<xref id="bit"/><xref id="bit"/><xref id="bit"/><xref id="bit"/></p>
<[ref>
</grammar>

co0e

Q9 Fist, you open the file on disk. This gives you a file object.

® vyou pass the file object to minidom.parse, which calls the read method of fsock and reads the XML
document from the file on disk.

® Be sure to call the close method of the file object after you're done with it. minidom.parse will not do
this for you.

4 Calling the toxml() method on the returned XML document prints out the entire thing.

Well, that all seems like a colossal waste of time. After all, you've already seen that minidom.parse can simply

take the filename and do all the opening and closing nonsense automatically. And it's true that if you know you're ju
going to be parsing a local file, you can pass the filename and minidom.parse is smart enough to Do The Right
Thing(tm). But notice how similar —— and easy —— it is to parse an XML document straight from the Internet.

Dive Into Python 133

Example 10.2. Parsing XML from a URL

>>> import urllib

>>> usock = urllib.urlopen(‘http://slashdot.org/slashdot.rdf')
>>> xmldoc = minidom.parse(usock)

>>> usock.close()

>>> print xmldoc.toxml()

<?xml version="1.0" ?>

<rdf:RDF xmlIns="http://my.netscape.com/rdf/simple/0.9/"
xmlins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax—ns#">

oo0e

<channel>

<title>Slashdot</title>

<link>http://slashdot.org/</link>

<description>News for nerds, stuff that matters</description>
</channel>



<item>

<title>To HDTV or Not to HDTV?</title>
<link>http://slashdot.org/article.pl?sid=01/12/28/0421241</link>
</item>

[...snip...]

9 As you saw in a previous chapter, urlopen takes a web page URL and returns a file—like object. Most
importantly, this object has a read method which returns the HTML source of the web page.

@ Now you pass the file—like object to minidom.parse, which obediently calls the read method of the object
and parses the XML data that the read method returns. The fact that this XML data is now coming straight
from a web page is completely irrelevant. minidom.parse doesn't know about web pages, and it doesn't care
about web pages; it just knows about file-like objects.

As soon as you're done with it, be sure to close the file-like object that urlopen gives you.

(3]
o By the way, this URL is real, and it really is XML. It's an XML representation of the current headlines on
Slashdot (http://slashdot.org/), a technical news and gossip site.

Example 10.3. Parsing XML from a string (the easy but inflexible way)

>>> contents = "<grammar><ref id='bit'’><p>0</p><p>1</p></ref></grammar>"
>>> xmldoc = minidom.parseString(contents)

>>> print xmldoc.toxml()

<?xml version="1.0" ?>

<grammar><ref id="bit"><p>0</p><p>1</p></ref></grammar>

©® minidom has a method, parseString, which takes an entire XML document as a string and parses it. You

can use this instead of minidom.parse if you know you already have your entire XML document in a string.
OK, so you can use the minidom.parse function for parsing both local files and remote URLSs, but for parsing
strings, you use... a different function. That means that if you want to be able to take input from a file, a URL, or a
string, you'll need special logic to check whether it's a string, and call the parseString function instead. How
unsatisfying.

If there were a way to turn a string into a file—like object, then you could simply pass this object to
minidom.parse. And in fact, there is a module specifically designed for doing just that: StringlO.

Dive Into Python 134

http://slashdot.org/

Example 10.4. Introducing StringlO

>>> contents = "<grammar><ref id="bit'><p>0</p><p>1</p></ref></grammar>"
>>> import StringlO

>>> ssock = StringlO.StringlO(contents) 1]

>>> ssock.read() (2]

"<grammar><ref id="bit'><p>0</p><p>1</p></ref></grammar>"

>>> ssock.read()

>>> ssock.seek(0) 4]
>>> ssock.read(15) (5]
‘<grammar><ref i'

>>> ssock.read(15)

"d="bit"><p>0</p"

>>> ssock.read()

"><p>1</p></ref></grammar>'

>>> ssock.close() (6]

Q@ The StringlO module contains a single class, also called StringlO, which allows you to turn a string
into a file—like object. The StringlO class takes the string as a parameter when creating an instance.

@ Now you have a file-like object, and you can do all sorts of file-like things with it. Like read, which
returns the original string.

© Calling read again returns an empty string. This is how real file objects work too; once you read the
entire file, you can't read any more without explicitly seeking to the beginning of the file. The
StringlO object works the same way.

® Youcan explicitly seek to the beginning of the string, just like seeking through a file, by using the seek
method of the StringlO object.

You can also read the string in chunks, by passing a size parameter to the read method.

At any time, read will return the rest of the string that you haven't read yet. All of this is exactly how
file objects work; hence the term file-like object.

@0

Example 10.5. Parsing XML from a string (the file—like object way)

>>> contents = "<grammar><ref id="bit'><p>0</p><p>1</p></ref></grammar>"
>>> ssock = StringlO.StringlO(contents)

>>> xmldoc = minidom.parse(ssock)

>>> ssock.close()

>>> print xmldoc.toxml()

<?xml version="1.0" ?>

<grammar><ref id="bit"><p>0</p><p>1</p></ref></grammar>

® Now you can pass the file-like object (really a StringlO) to minidom.parse, which will call the object's

read method and happily parse away, never knowing that its input came from a hard—coded string.
So now you know how to use a single function, minidom.parse, to parse an XML document stored on a web page,
in a local file, or in a hard—coded string. For a web page, you use urlopen to get a file-like object; for a local file,
you use open; and for a string, you use StringlO. Now let's take it one step further and generalize these differences
as well.

Example 10.6. openAnything

def openAnything(source): (1]
try to open with urllib (if source is http, ftp, or file URL)
import urllib

try:

Dive Into Python 135

return urllib.urlopen(source) (2]
except (IOError, OSError):
pass

try to open with native open function (if source is pathname)
try:

return open(source) (3]
except (IOError, OSError):

pass

treat source as string
import StringlO
return StringlO.StringlO(str(source)) (4]

Q The openAnything function takes a single parameter, source, and returns a file-like object. source is a
string of some sort; it can either be a URL (like 'http://slashdot.org/slashdot.rdf"), a full or
partial pathname to a local file (like 'binary.xml’), or a string that contains actual XML data to be parsed.

O st you see if source is a URL. You do this through brute force: you try to open it as a URL and silently
ignore errors caused by trying to open something which is not a URL. This is actually elegant in the sense tha
if urllib ever supports new types of URLSs in the future, you will also support them without recoding. If
urllib is able to open source, then the return kicks you out of the function immediately and the
following try statements never execute.

® On the other hand, if urllib yelled at you and told you that source wasn't a valid URL, you assume it's a
path to a file on disk and try to open it. Again, you don't do anything fancy to check whether source is a valid
filename or not (the rules for valid filenames vary wildly between different platforms anyway, so you'd
probably get them wrong anyway). Instead, you just blindly open the file, and silently trap any errors.

@ By this point, you need to assume that source is a string that has hard—coded data in it (since nothing else
worked), so you use StringlO to create a file-like object out of it and return that. (In fact, since you're using
the str function, source doesn't even need to be a string; it could be any object, and you'll use its string
representation, as defined by its __str___ special method.)

Now you can use this openAnything function in conjunction with minidom.parse to make a function that takes

a source that refers to an XML document somehow (either as a URL, or a local filename, or a hard—coded XML

document in a string) and parses it.

Example 10.7. Using openAnything in kgp.py

class KantGenerator:
def _load(self, source):
sock = toolbox.openAnything(source)
xmldoc = minidom.parse(sock).documentElement
sock.close()
return xmldoc

10.2. Standard input, output, and error

UNIX users are already familiar with the concept of standard input, standard output, and standard error. This sectio
for the rest of you.

Standard output and standard error (commonly abbreviated stdout and stderr) are pipes that are built into every
UNIX system. When you print something, it goes to the stdout pipe; when your program crashes and prints out
debugging information (like a traceback in Python), it goes to the stderr pipe. Both of these pipes are ordinarily just
connected to the terminal window where you are working, so when a program prints, you see the output, and when
program crashes, you see the debugging information. (If you're working on a system with a window—-based Python

Dive Into Python 136

IDE, stdout and stderr default to your "Interactive Window".)

Example 10.8. Introducing stdout and stderr

>>> for i in range(3):

print 'Dive in' (1]
Dive in
Dive in
Dive in
>>> import sys
>>> for i in range(3):

sys.stdout.write('Dive in') (2]
Dive inDive inDive in
>>> for i in range(3):

sys.stderr.write('Dive in’) (3]
Dive inDive inDive in

9 As you saw in Example 6.9, Simple Counters , you can use Python's built—in range function to build simple
counter loops that repeat something a set number of times.

® stdout is a file—like object; calling its write function will print out whatever string you give it. In fact, this
is what the print function really does; it adds a carriage return to the end of the string you're printing, and
calls sys.stdout.write.

® Inthe simplest case, stdout and stderr send their output to the same place: the Python IDE (if you're in
one), or the terminal (if you're running Python from the command line). Like stdout, stderr does not add
carriage returns for you; if you want them, add them yourself.

stdout and stderr are both file—like objects, like the ones you discussed in Section 10.1, Abstracting input
sources , but they are both write—only. They have no read method, only write. Still, they are file-like objects, and
you can assign any other file— or file-like object to them to redirect their output.

Example 10.9. Redirecting output

[you@localhost kgp]$ python stdout.py

Dive in

[you@localhost kgp]$ cat out.log

This message will be logged instead of displayed

(On Windows, you can use type instead of cat to display the contents of a file.)

If you have not already done so, you can download this and other examples
(http://diveintopython.org/download/diveintopython—-examples—5.4.zip) used in this book.

#stdout.py
import sys

print 'Dive in’

saveout = sys.stdout

fsock = open(‘out.log’, 'w')

sys.stdout = fsock

print "This message will be logged instead of displayed'
sys.stdout = saveout

fsock.close()

QRO0O0e

Q This will print to the IDE "Interactive Window" (or the terminal, if running the script from the command line).

Dive Into Python 137

http://diveintopython.org/download/diveintopython-examples-5.4.zip

Always save stdout before redirecting it, so you can set it back to normal later.

Open a file for writing. If the file doesn't exist, it will be created. If the file does exist, it will be overwritten.
Redirect all further output to the new file you just opened.

This will be "printed" to the log file only; it will not be visible in the IDE window or on the screen.

Set stdout back to the way it was before you mucked with it.

Close the log file.
Redirecting stderr works exactly the same way, using sys.stderr instead of sys.stdout.

Q000

Example 10.10. Redirecting error information

[you@localhost kgp]$ python stderr.py
[you@Ilocalhost kgp]$ cat error.log
Traceback (most recent line last):
File "stderr.py", line 5, in ?
raise Exception, 'this error will be logged'
Exception: this error will be logged

If you have not already done so, you can download this and other examples
(http://diveintopython.org/download/diveintopython—examples—5.4.zip) used in this book.

#stderr.py

import sys

fsock = open(‘error.log', 'w'") (1]
sys.stderr = fsock (2]
raise Exception, 'this error will be logged' o0

o Open the log file where you want to store debugging information.
Redirect standard error by assigning the file object of the newly—opened log file to stderr.

(2]

® Raise an exception. Note from the screen output that this does not print anything on screen. All the normal
traceback information has been written to error.log.

4]

Also note that you're not explicitly closing your log file, nor are you setting stderr back to its original value.
This is fine, since once the program crashes (because of the exception), Python will clean up and close the fil
for us, and it doesn't make any difference that stderr is never restored, since, as | mentioned, the program
crashes and Python ends. Restoring the original is more important for stdout, if you expect to go do other
stuff within the same script afterwards.
Since it is so common to write error messages to standard error, there is a shorthand syntax that can be used inste
going through the hassle of redirecting it outright.

Example 10.11. Printing to stderr

>>> print 'entering function’

entering function

>>> import sys

>>> print >> sys.stderr, 'entering function’ 1]
entering function

@ This shorthand syntax of the print statement can be used to write to any open file, or file—like object. In

this case, you can redirect a single print statement to stderr without affecting subsequent print
statements.

Dive Into Python 138

http://diveintopython.org/download/diveintopython-examples-5.4.zip

Standard input, on the other hand, is a read-only file object, and it represents the data flowing into the program fror
some previous program. This will likely not make much sense to classic Mac OS users, or even Windows users unl
you were ever fluent on the MS-DOS command line. The way it works is that you can construct a chain of comman
in a single line, so that one program's output becomes the input for the next program in the chain. The first program
simply outputs to standard output (without doing any special redirecting itself, just doing normal print statements or
whatever), and the next program reads from standard input, and the operating system takes care of connecting one
program's output to the next program's input.

Example 10.12. Chaining commands

[you@localhost kgp]$ python kgp.py —g binary.xml (1]
01100111
[you@localhost kgp]$ cat binary.xml (2]

<?xml version="1.0"?>
<IDOCTYPE grammar PUBLIC "-//diveintopython.org//DTD Kant Generator Pro v1.0//EN" "kgp.dtd">
<grammar>
<ref id="bit">
<p>0</p>
<p>1</p>
<[ref>
<ref id="byte">
<p><xref id="bit"/><xref id="bit"/><xref id="bit"/><xref id="bit"/>\
<xref id="bit"/><xref id="bit"/><xref id="bit"/><xref id="bit"/></p>
<[ref>
</grammar>
[you@localhost kgp]$ cat binary.xml | python kgp.py —g — ®©0
10110001

9 As you saw in Section 9.1, Diving in, this will print a string of eight random bits, O or 1.
® This simply prints out the entire contents of binary.xml. (Windows users should use type instead of cat.)

® This prints the contents of binary.xml, but the "|" character, called the "pipe" character, means that the
contents will not be printed to the screen. Instead, they will become the standard input of the next command,
which in this case calls your Python script.

@ Instead of specifying a module (like binary.xml), you specify "-", which causes your script to load the
grammar from standard input instead of from a specific file on disk. (More on how this happens in the next
example.) So the effect is the same as the first syntax, where you specified the grammar filename directly, bu
think of the expansion possibilities here. Instead of simply doing cat binary.xml, you could run a script
that dynamically generates the grammar, then you can pipe it into your script. It could come from anywhere: a
database, or some grammar—generating meta—script, or whatever. The point is that you don't need to change
your kgp.py script at all to incorporate any of this functionality. All you need to do is be able to take grammar
files from standard input, and you can separate all the other logic into another program.

So how does the script "know" to read from standard input when the grammar file is "-"? It's not magic; it's just codt

Example 10.13. Reading from standard input in kgp.py

def openAnything(source):
if source =="-" (1]
import sys
return sys.stdin

try to open with urllib (if source is http, ftp, or file URL)

import urllib
try:

Dive Into Python 139

[... snip ...]

Q@ Thisisthe openAnything function from toolbox.py, which you previously examined in
Section 10.1, Abstracting input sources . All you've done is add three lines of code at the beginning
of the function to check if the source is "-"; if so, you return sys.stdin. Really, that's it!
Remember, stdin is a file—like object with a read method, so the rest of the code (in kgp.py,
where you call openAnything) doesn't change a bit.

10.3. Caching node lookups

kgp.py employs several tricks which may or may not be useful to you in your XML processing. The first one takes
advantage of the consistent structure of the input documents to build a cache of nodes.

A grammar file defines a series of ref elements. Each ref contains one or more p elements, which can contain a lot
of different things, including xrefs. Whenever you encounter an xref, you look for a corresponding ref element

with the same id attribute, and choose one of the ref element's children and parse it. (You'll see how this random
choice is made in the next section.)

This is how you build up the grammar: define ref elements for the smallest pieces, then define ref elements which
"include" the first ref elements by using xref, and so forth. Then you parse the "largest" reference and follow each
xref, and eventually output real text. The text you output depends on the (random) decisions you make each time
you fill in an xref, so the output is different each time.

This is all very flexible, but there is one downside: performance. When you find an xref and need to find the
corresponding ref element, you have a problem. The xref has an id attribute, and you want to find the ref

element that has that same id attribute, but there is no easy way to do that. The slow way to do it would be to get th
entire list of ref elements each time, then manually loop through and look at each id attribute. The fast way is to do
that once and build a cache, in the form of a dictionary.

Example 10.14. loadGrammar

def loadGrammar(self, grammar):
self.grammar = self._load(grammar)
self.refs = {}
for ref in self.grammar.getElementsByTagName("ref"):
self.refs[ref.attributes["id"].value] = ref

ol

(4]

Start by creating an empty dictionary, self.refs.

As you saw in Section 9.5, Searching for elements , getElementsByTagName returns a list of all the
elements of a particular name. You easily can get a list of all the ref elements, then simply loop through that
list.

® As you saw in Section 9.6, Accessing element attributes , you can access individual attributes of an element
by name, using standard dictionary syntax. So the keys of the self.refs dictionary will be the values of the
id attribute of each ref element.

@ The values of the self.refs dictionary will be the ref elements themselves. As you saw in Section 9.3,
Parsing XML , each element, each node, each comment, each piece of text in a parsed XML document is an
object.
Once you build this cache, whenever you come across an xref and need to find the ref element with the same id
attribute, you can simply look it up in self.refs.

®e

Example 10.15. Using the ref element cache

Dive Into Python 140

def do_xref(self, node):
id = node.attributes["id"].value
self.parse(self.randomChildElement(self.refs[id]))

You'll explore the randomChildElement function in the next section.

10.4. Finding direct children of a node

Another useful techique when parsing XML documents is finding all the direct child elements of a particular element
For instance, in the grammar files, a ref element can have several p elements, each of which can contain many
things, including other p elements. You want to find just the p elements that are children of the ref, not p elements
that are children of other p elements.

You might think you could simply use getElementsByTagName for this, but you can't.

getElementsByTagName searches recursively and returns a single list for all the elements it finds. Since p
elements can contain other p elements, you can't use getElementsByTagName, because it would return nested p
elements that you don't want. To find only direct child elements, you'll need to do it yourself.

Example 10.16. Finding direct child elements

def randomChildElement(self, node):
choices = [e for e in node.childNodes
if e.nodeType == e.ELEMENT_NODE] 006
chosen = random.choice(choices) (4]
return chosen

9 As you saw in Example 9.9, Getting child nodes , the childNodes attribute returns a list of all
the child nodes of an element.

® However, as you saw in Example 9.11, Child nodes can be text, the list returned by childNodes
contains all different types of nodes, including text nodes. That's not what you're looking for here.
You only want the children that are elements.

® Eachnodehasa nodeType attribute, which can be ELEMENT_NODE, TEXT_NODE,
COMMENT_NODE, or any number of other values. The complete list of possible values is in the
__init__.py file in the xml.dom package. (See Section 9.2, Packages for more on packages.)
But you're just interested in nodes that are elements, so you can filter the list to only include those
nodes whose nodeType is ELEMENT_NODE.

@ oOnce you have a list of actual elements, choosing a random one is easy. Python comes with a module
called random which includes several useful functions. The random.choice function takes a list
of any number of items and returns a random item. For example, if the ref elements contains several
p elements, then choices would be a list of p elements, and chosen would end up being assigned
exactly one of them, selected at random.

10.5. Creating separate handlers by node type

The third useful XML processing tip involves separating your code into logical functions, based on node types and
element names. Parsed XML documents are made up of various types of nodes, each represented by a Python obj
The root level of the document itself is represented by a Document object. The Document then contains one or
more Element objects (for actual XML tags), each of which may contain other Element objects, Text objects (for
bits of text), or Comment objects (for embedded comments). Python makes it easy to write a dispatcher to separate
the logic for each node type.

Dive Into Python 141

Example 10.17. Class names of parsed XML objects

>>> from xml.dom import minidom

>>> xmldoc = minidom.parse(‘kant.xml’) (1]
>>> xmldoc

<xml.dom.minidom.Document instance at 0Ox01359DE8>
>>> xmldoc.__class__

<class xml.dom.minidom.Document at 0x01105D40>
>>> xmldoc.__class__._ _name__

‘Document’

@ Assume for a moment that kant.xml is in the current directory.

@ As you saw in Section 9.2, Packages , the object returned by parsing an XML document is a
Document object, as defined in the minidom.py in the xml.dom package. As you saw in
Section 5.4, Instantiating Classes, __ class__is built-in attribute of every Python object.

® Furthermore, __nhame___is a built=in attribute of every Python class, and it is a string. This string is

not mysterious; it's the same as the class name you type when you define a class yourself. (See

Section 5.3, Defining Classes .)
Fine, so now you can get the class name of any particular XML node (since each XML node is represented as a
Python object). How can you use this to your advantage to separate the logic of parsing each node type? The answ
getattr, which you first saw in Section 4.4, Getting Object References With getattr .

Example 10.18. parse, a generic XML node dispatcher

def parse(self, node):
parseMethod = getattr(self, "parse_%s" % node.__class__._ _name__) (1 2
parseMethod(node)

Q First off, notice that you're constructing a larger string based on the class name of the node you were passed
the node argument). So if you're passed a Document node, you're constructing the string
'‘parse_Document’, and so forth.

@ Now you can treat that string as a function name, and get a reference to the function itself using getattr
(3]

Finally, you can call that function and pass the node itself as an argument. The next example shows the
definitions of each of these functions.

Example 10.19. Functions called by the parse dispatcher

def parse_Document(self, node): (1]
self.parse(node.documentElement)

def parse_Text(self, node): (2]

text = node.data

if self.capitalizeNextWord:
self.pieces.append(text[0].upper())
self.pieces.append(text[1:])
self.capitalizeNextWord = 0

else:
self.pieces.append(text)

def parse_Comment(self, node): (3]
pass

def parse_Element(self, node): (4]
handlerMethod = getattr(self, "do_%s" % node.tagName)
handlerMethod(node)

Dive Into Python 142

o parse_Document is only ever called once, since there is only one Document node in an XML document,
and only one Document object in the parsed XML representation. It simply turns around and parses the root
element of the grammar file.

(2 parse_Text is called on nodes that represent bits of text. The function itself does some special processing to
handle automatic capitalization of the first word of a sentence, but otherwise simply appends the represented
text to a list.

© parse_Comment is just a pass, since you don't care about embedded comments in the grammar files. Note,
however, that you still need to define the function and explicitly make it do nothing. If the function did not
exist, the generic parse function would fail as soon as it stumbled on a comment, because it would try to find
the non-existent parse_Comment function. Defining a separate function for every node type, even ones you
don't use, allows the generic parse function to stay simple and dumb.

Q@ The parse_Element method is actually itself a dispatcher, based on the name of the element's tag. The basic
idea is the same: take what distinguishes elements from each other (their tag names) and dispatch to a separ
function for each of them. You construct a string like 'do_xref' (for an <xref> tag), find a function of that
name, and call it. And so forth for each of the other tag names that might be found in the course of parsing a
grammar file (<p> tags, <choice> tags).

In this example, the dispatch functions parse and parse_Element simply find other methods in the same class. If

your processing is very complex (or you have many different tag names), you could break up your code into separa

modules, and use dynamic importing to import each module and call whatever functions you needed. Dynamic
importing will be discussed in Chapter 16, Functional Programming.

10.6. Handling command-line arguments

Python fully supports creating programs that can be run on the command line, complete with command-line
arguments and either short— or long-style flags to specify various options. None of this is XML-specific, but this
script makes good use of command-line processing, so it seemed like a good time to mention it.

It's difficult to talk about command-line processing without understanding how command-line arguments are
exposed to your Python program, so let's write a simple program to see them.

Example 10.20. Introducing sys.argv

If you have not already done so, you can download this and other examples
(http://diveintopython.org/download/diveintopython—examples—5.4.zip) used in this book.

#argecho.py
import sys

for arg in sys.argv: (1]
print arg

©® Each command-line argument passed to the program will be in sys.argv, which is just a list. Here
you are printing each argument on a separate line.

Example 10.21. The contents of sys.argv

[you@localhost py]$ python argecho.py
argecho.py

[you@localhost py]$ python argecho.py abc def
argecho.py

abc

def

®

Dive Into Python 143

http://diveintopython.org/download/diveintopython-examples-5.4.zip

[you@localhost py]$ python argecho.py ——help (3]
argecho.py

——help

[you@localhost py]$ python argecho.py —m kant.xml (4]
argecho.py

-m

kant.xml

Q The first thing to know about sys.argv is that it contains the name of the script you're calling. You
will actually use this knowledge to your advantage later, in Chapter 16, Functional Programming. Don't
worry about it for now.

® Ccommand-line arguments are separated by spaces, and each shows up as a separate element in the
sys.argv list.

Command-line flags, like ——help, also show up as their own element in the sys.argv list.

To make things even more interesting, some command-line flags themselves take arguments. For

instance, here you have a flag (—-m) which takes an argument (kant.xml). Both the flag itself and the

flag's argument are simply sequential elements in the sys.argyv list. No attempt is made to associate

one with the other; all you get is a list.

S0 as you can see, you certainly have all the information passed on the command line, but then again, it doesn't loc
like it's going to be all that easy to actually use it. For simple programs that only take a single argument and have n
flags, you can simply use sys.argv[1] to access the argument. There's no shame in this; | do it all the time. For
more complex programs, you need the getopt module.

oo

Example 10.22. Introducing getopt

def main(argv):

grammar = "kant.xml" (1]
try:
opts, args = getopt.getopt(argv, "hg:d", ["help", "grammar="]) (2]
except getopt.GetoptError: (3]
usage() (4
sys.exit(2)
if _name__=="_main__":

main(sys.argv[1:])

Q First off, look at the bottom of the example and notice that you're calling the main function with
sys.argv[1l:]. Remember, sys.argv[0] is the name of the script that you're running; you don't care
about that for command-line processing, so you chop it off and pass the rest of the list.

® This is where all the interesting processing happens. The getopt function of the getopt module takes three
parameters: the argument list (which you got from sys.argv[1:]), a string containing all the possible
single—character command-line flags that this program accepts, and a list of longer command-line flags that
are equivalent to the single—character versions. This is quite confusing at first glance, and is explained in mor
detail below.

® anything goes wrong trying to parse these command-line flags, getopt will raise an exception, which you
catch. You told getopt all the flags you understand, so this probably means that the end user passed some
command-line flag that you don't understand.

® Asis standard practice in the UNIX world, when the script is passed flags it doesn't understand, you print out
summary of proper usage and exit gracefully. Note that | haven't shown the usage function here. You would
still need to code that somewhere and have it print out the appropriate summary; it's not automatic.

Dive Into Python 144

So what are all those parameters you pass to the getopt function? Well, the first one is simply the raw list of
command-line flags and arguments (not including the first element, the script name, which you already chopped off
before calling the main function). The second is the list of short command-line flags that the script accepts.

"hg:d"
-h
print usage summary
-g...
use specified grammar file or URL
-d

show debugging information while parsing

The first and third flags are simply standalone flags; you specify them or you don't, and they do things (print help) o
change state (turn on debugging). However, the second flag (—g) must be followed by an argument, which is the na
of the grammar file to read from. In fact it can be a filename or a web address, and you don't know which yet (you'll
figure it out later), but you know it has to be something. So you tell getopt this by putting a colon after the g in that
second parameter to the getopt function.

To further complicate things, the script accepts either short flags (like —h) or long flags (like ——help), and you want
them to do the same thing. This is what the third parameter to getopt is for, to specify a list of the long flags that
correspond to the short flags you specified in the second parameter.

[*help”, "grammar="]

——help
print usage summary
——grammar ...
use specified grammar file or URL

Three things of note here:

1. All long flags are preceded by two dashes on the command line, but you don't include those dashes when
calling getopt. They are understood.

2. The ——grammar flag must always be followed by an additional argument, just like the —g flag. This is
notated by an equals sign, "grammar=".

3. The list of long flags is shorter than the list of short flags, because the —d flag does not have a correspondin
long version. This is fine; only —d will turn on debugging. But the order of short and long flags needs to be
the same, so you'll need to specify all the short flags that do have corresponding long flags first, then all the
rest of the short flags.

Confused yet? Let's look at the actual code and see if it makes sense in context.

Example 10.23. Handling command-line arguments in kgp.py

def main(argv): (1]
grammar = "kant.xml"
try:
opts, args = getopt.getopt(argv, "hg:d", [*help”, "grammar="])
except getopt.GetoptError:
usage()
sys.exit(2)
for opt, arg in opts: (2]

Dive Into Python 145

if opt in ("=h", "==help"): (3]
usage()
sys.exit()

elif opt == '~d": (4
global _debug
_debug=1

elif optin ("-g", "-—grammar"): (5]
grammar = arg

source = "".join(args) (6

k = KantGenerator(grammar, source)
print k.output()

Q@ The grammar variable will keep track of the grammar file you're using. You initialize it here in case it's not
specified on the command line (using either the —g or the ——grammar flag).

@ The opts variable that you get back from getopt contains a list of tuples: flag and argument. If the flag
doesn't take an argument, then arg will simply be None. This makes it easier to loop through the flags.

© getopt validates that the command-line flags are acceptable, but it doesn't do any sort of conversion between
short and long flags. If you specify the —h flag, opt will contain "-h"; if you specify the ——help flag, opt
will contain "-—help". So you need to check for both.

© Remember, the —d flag didn't have a corresponding long flag, so you only need to check for the short form. If
you find it, you set a global variable that you'll refer to later to print out debugging information. (I used this
during the development of the script. What, you thought all these examples worked on the first try?)

® f you find a grammar file, either with a —g flag or a ——grammar flag, you save the argument that followed it
(stored in arg) into the grammar variable, overwriting the default that you initialized at the top of the main
function.

® That'sit. You've looped through and dealt with all the command-line flags. That means that anything left mus
be command-line arguments. These come back from the getopt function in the args variable. In this case,
you're treating them as source material for the parser. If there are no command-line arguments specified, arg
will be an empty list, and source will end up as the empty string.

10.7. Putting it all together

You've covered a lot of ground. Let's step back and see how all the pieces fit together.

To start with, this is a script that takes its arguments on the command line, using the getopt module.
def main(argv):
try:
opts, args = getopt.getopt(argv, "hg:d", ["help", "grammar="])
except getopt.GetoptError:

for opt, arg in opts:
You create a new instance of the KantGenerator class, and pass it the grammar file and source that may or may
not have been specified on the command line.

k = KantGenerator(grammar, source)
The KantGenerator instance automatically loads the grammar, which is an XML file. You use your custom

openAnything function to open the file (which could be stored in a local file or a remote web server), then use the
built—-in minidom parsing functions to parse the XML into a tree of Python objects.

Dive Into Python 146

def _load(self, source):
sock = toolbox.openAnything(source)
xmldoc = minidom.parse(sock).documentElement
sock.close()

Oh, and along the way, you take advantage of your knowledge of the structure of the XML document to set up a littl
cache of references, which are just elements in the XML document.

def loadGrammar(self, grammar):
for ref in self.grammar.getElementsByTagName("ref"):
self.refs[ref.attributes["id"].value] = ref

If you specified some source material on the command line, you use that; otherwise you rip through the grammar
looking for the "top—level" reference (that isn't referenced by anything else) and use that as a starting point.

def getDefaultSource(self):
xrefs = {}
for xref in self.grammar.getElementsByTagName("xref"):
xrefs[xref.attributes["id"].value] = 1
xrefs = xrefs.keys()
standaloneXrefs = [e for e in self.refs.keys() if e not in xrefs]
return '<xref id="%s"/>" % random.choice(standaloneXrefs)

Now you rip through the source material. The source material is also XML, and you parse it one node at a time. To
keep the code separated and more maintainable, you use separate handlers for each node type.

def parse_Element(self, node):
handlerMethod = getattr(self, "do_%s" % node.tagName)
handlerMethod(node)

You bounce through the grammar, parsing all the children of each p element,

def do_p(self, node):

if doit:
for child in node.childNodes: self.parse(child)

replacing choice elements with a random child,

def do_choice(self, node):
self.parse(self.randomChildElement(node))

and replacing xref elements with a random child of the corresponding ref element, which you previously cached.

def do_xref(self, node):
id = node.attributes["id"].value
self.parse(self.randomChildElement(self.refs[id]))

Eventually, you parse your way down to plain text,

def parse_Text(self, node):
text = node.data

self.pieces.append(text)
which you print out.
def main(argv):

Dive Into Python 147

k = KantGenerator(grammar, source)
print k.output()

10.8. Summary

Python comes with powerful libraries for parsing and manipulating XML documents. The minidom takes an XML
file and parses it into Python objects, providing for random access to arbitrary elements. Furthermore, this chapter
shows how Python can be used to create a "real" standalone command-line script, complete with command-line
flags, command-line arguments, error handling, even the ability to take input from the piped result of a previous
program.

Before moving on to the next chapter, you should be comfortable doing all of these things:
 Chaining programs with standard input and output

« Defining dynamic dispatchers with getattr.
» Using command-line flags and validating them with getopt

Dive Into Python 148

Chapter 11. HTTP Web Services

11.1. Diving in

You've learned about HTML processing and XML processing, and along the way you saw how to download a web
page and how to parse XML from a URL, but let's dive into the more general topic of HTTP web services.

Simply stated, HTTP web services are programmatic ways of sending and receiving data from remote servers using
the operations of HTTP directly. If you want to get data from the server, use a straight HTTP GET; if you want to
send new data to the server, use HTTP POST. (Some more advanced HTTP web service APIs also define ways of
modifying existing data and deleting data, using HTTP PUT and HTTP DELETE.) In other words, the "verbs" built
into the HTTP protocol (GET, POST, PUT, and DELETE) map directly to application—level operations for receiving,
sending, modifying, and deleting data.

The main advantage of this approach is simplicity, and its simplicity has proven popular with a lot of different sites.
Data —— usually XML data —— can be built and stored statically, or generated dynamically by a server—side script, at
all major languages include an HTTP library for downloading it. Debugging is also easier, because you can load up
the web service in any web browser and see the raw data. Modern browsers will even nicely format and pretty—prin
XML data for you, to allow you to quickly navigate through it.

Examples of pure XML-over-HTTP web services:

* Amazon API (http://www.amazon.com/webservices) allows you to retrieve product information from the
Amazon.com online store.

 National Weather Service (http://www.nws.noaa.gov/alerts/) (United States) and Hong Kong Observatory
(http://demo.xml.weather.gov.hk/) (Hong Kong) offer weather alerts as a web service.

» Atom API (http://atomenabled.org/) for managing web-based content.

» Syndicated feeds (http://syndic8.com/) from weblogs and news sites bring you up—to—the—minute news fromn
a variety of sites.

In later chapters, you'll explore APIs which use HTTP as a transport for sending and receiving data, but don't map
application semantics to the underlying HTTP semantics. (They tunnel everything over HTTP POST.) But this chapt
will concentrate on using HTTP GET to get data from a remote server, and you'll explore several HTTP features yol
can use to get the maximum benefit out of pure HTTP web services.

Here is a more advanced version of the openanything module that you saw in the previous chapter:

Example 11.1. openanything.py

If you have not already done so, you can download this and other examples
(http://diveintopython.org/download/diveintopython—examples—5.4.zip) used in this book.

import urllib2, urlparse, gzip
from StringlO import StringlO

USER_AGENT = 'OpenAnything/1.0 +http://diveintopython.org/http_web_services/'

class SmartRedirectHandler(urllib2.HTTPRedirectHandler):
def http_error_301(self, req, fp, code, msg, headers):
result = urllib2. HTTPRedirectHandler.http_error_301(
self, req, fp, code, msg, headers)
result.status = code

Dive Into Python 149

http://www.amazon.com/webservices
http://www.nws.noaa.gov/alerts/
http://demo.xml.weather.gov.hk/
http://atomenabled.org/
http://syndic8.com/
http://diveintopython.org/download/diveintopython-examples-5.4.zip

return result

def http_error_302(self, req, fp, code, msg, headers):
result = urllib2. HTTPRedirectHandler.http_error_302(
self, req, fp, code, msg, headers)
result.status = code
return result

class DefaultErrorHandler(urllib2. HTTPDefaultErrorHandler):
def http_error_default(self, req, fp, code, msg, headers):
result = urllib2. HTTPError(
req.get_full_url(), code, msg, headers, fp)
result.status = code
return result

def openAnything(source, etag=None, lastmodified=None, agent=USER_AGENT):
"URL, filename, or string ——> stream

This function lets you define parsers that take any input source
(URL, pathname to local or network file, or actual data as a string)
and deal with it in a uniform manner. Returned object is guaranteed
to have all the basic stdio read methods (read, readline, readlines).
Just .close() the object when you're done with it.

If the etag argument is supplied, it will be used as the value of an
If-None—Match request header.

If the lastmodified argument is supplied, it must be a formatted
date/time string in GMT (as returned in the Last—Modified header of
a previous request). The formatted date/time will be used

as the value of an If-Modified-Since request header.

If the agent argument is supplied, it will be used as the value of a
User—Agent request header.

if hasattr(source, 'read’):
return source

if source =="'-"
return sys.stdin

if urlparse.urlparse(source)[0] == 'http":
open URL with urllib2
request = urllib2.Request(source)
request.add_header('User-Agent’, agent)
if etag:
request.add_header('If-None—-Match', etag)
if lastmodified:
request.add_header('If-Modified—Since', lastmodified)
request.add_header('Accept-encoding', 'gzip')
opener = urllib2.build_opener(SmartRedirectHandler(), DefaultErrorHandler())
return opener.open(request)

try to open with native open function (if source is a filename)
try:

return open(source)
except (IOError, OSError):

pass

treat source as string
return StringlO(str(source))

Dive Into Python 150

def fetch(source, etag=None, last_modified=None, agent=USER_AGENT):
"'Fetch data and metadata from a URL, file, stream, or string"
result = {}
f = openAnything(source, etag, last_modified, agent)
result['data’] = f.read()
if hasattr(f, 'headers’):
save ETag, if the server sent one
result['etag'] = f.headers.get('ETag'")
save Last—Modified header, if the server sent one
result['lastmodified’] = f.headers.get('Last—Modified")
if f.headers.get(‘content-encoding’, ") == 'gzip"
data came back gzip—compressed, decompress it
result['data’] = gzip.GzipFile(fileobj=StringlO(result['data’]])).read()
if hasattr(f, 'url’):
result['url] = f.url
result['status’] = 200
if hasattr(f, 'status'):
result['status'] = f.status
f.close()
return result

Further reading

» Paul Prescod believes that pure HTTP web services are the future of the Internet
(http://webservices.xml.com/pub/a/ws/2002/02/06/rest.html).

11.2. How not to fetch data over HTTP

Let's say you want to download a resource over HTTP, such as a syndicated Atom feed. But you don't just want to
download it once; you want to download it over and over again, every hour, to get the latest news from the site that'
offering the news feed. Let's do it the quick—and-dirty way first, and then see how you can do better.

Example 11.2. Downloading a feed the quick—and-dirty way

>>> import urllib
>>> data = urllib.urlopen(’http://diveintomark.org/xml/atom.xml’).read() (1]
>>> print data
<?xml version="1.0" encoding="iso—-8859-1"?>
<feed version="0.3"
xmins="http://purl.org/atom/ns#"
xmins:dc="http://purl.org/dc/elements/1.1/"
xml:lang="en">
<title mode="escaped">dive into mark</title>
<link rel="alternate" type="text/html" href="http://diveintomark.org/"/>
<—-rest of feed omitted for brevity ——>

o Downloading anything over HTTP is incredibly easy in Python; in fact, it's a one-liner. The urllib module
has a handy urlopen function that takes the address of the page you want, and returns a file-like object that
you can just read() from to get the full contents of the page. It just can't get much easier.
So what's wrong with this? Well, for a quick one—off during testing or development, there's nothing wrong with it. |
do it all the time. | wanted the contents of the feed, and | got the contents of the feed. The same technique works fo
any web page. But once you start thinking in terms of a web service that you want to access on a regular basis ——
remember, you said you were planning on retrieving this syndicated feed once an hour —— then you're being
inefficient, and you're being rude.

Let's talk about some of the basic features of HTTP.

Dive Into Python 151

http://webservices.xml.com/pub/a/ws/2002/02/06/rest.html

11.3. Features of HTTP

There are five important features of HTTP which you should support.

11.3.1. User-Agent

The User—Agent is simply a way for a client to tell a server who it is when it requests a web page, a syndicated
feed, or any sort of web service over HTTP. When the client requests a resource, it should always announce who it
as specifically as possible. This allows the server—side administrator to get in touch with the client-side developer i
anything is going fantastically wrong.

By default, Python sends a generic User—Agent: Python-urllib/1.15. In the next section, you'll see how to
change this to something more specific.

11.3.2. Redirects

Sometimes resources move around. Web sites get reorganized, pages move to new addresses. Even web services
reorganize. A syndicated feed at http://example.com/index.xml might be moved to
http://example.com/xml/atom.xml. Or an entire domain might move, as an organization expands and

reorganizes; for instance, http://www.example.com/index.xml might be redirected to
http://server—farm—-1.example.com/index.xml.

Every time you request any kind of resource from an HTTP server, the server includes a status code in its response
Status code 200 means "everything's normal, here's the page you asked for". Status code 404 means "page not
found". (You've probably seen 404 errors while browsing the web.)

HTTP has two different ways of signifying that a resource has moved. Status code 302 is a temporary redirect; it
means "oops, that got moved over here temporarily” (and then gives the temporary address in a Location: header).
Status code 301 is a permanent redirect; it means "oops, that got moved permanently” (and then gives the new
address in a Location: header). If you get a 302 status code and a new address, the HTTP specification says you
should use the new address to get what you asked for, but the next time you want to access the same resource, yo
should retry the old address. But if you get a 301 status code and a new address, you're supposed to use the new
address from then on.

urllib.urlopen will automatically "follow" redirects when it receives the appropriate status code from the HTTP
server, but unfortunately, it doesn't tell you when it does so. You'll end up getting data you asked for, but you'll neve
know that the underlying library "helpfully” followed a redirect for you. So you'll continue pounding away at the old
address, and each time you'll get redirected to the new address. That's two round trips instead of one: not very
efficient! Later in this chapter, you'll see how to work around this so you can deal with permanent redirects properly
and efficiently.

11.3.3. Last—Modified/If-Modified—Since

Some data changes all the time. The home page of CNN.com is constantly updating every few minutes. On the oth
hand, the home page of Google.com only changes once every few weeks (when they put up a special holiday logo,
advertise a new service). Web services are no different; usually the server knows when the data you requested last
changed, and HTTP provides a way for the server to include this last-modified date along with the data you reques

If you ask for the same data a second time (or third, or fourth), you can tell the server the last-modified date that yo

got last time: you send an If-Modified—Since header with your request, with the date you got back from the
server last time. If the data hasn't changed since then, the server sends back a special HTTP status code 304, whic

Dive Into Python 152

means "this data hasn't changed since the last time you asked for it". Why is this an improvement? Because when 1
server sends a 304, it doesn't re—send the data. All you get is the status code. So you don't need to download the
same data over and over again if it hasn't changed; the server assumes you have the data cached locally.

All modern web browsers support last—-modified date checking. If you've ever visited a page, re-visited the same pe
a day later and found that it hadn't changed, and wondered why it loaded so quickly the second time —- this could k
why. Your web browser cached the contents of the page locally the first time, and when you visited the second time
your browser automatically sent the last—-modified date it got from the server the first time. The server simply says
304: Not Modified, so your browser knows to load the page from its cache. Web services can be this smart too.

Python's URL library has no built-in support for last—-modified date checking, but since you can add arbitrary heade
to each request and read arbitrary headers in each response, you can add support for it yourself.

11.3.4. ETag/If-None—Match

ETags are an alternate way to accomplish the same thing as the last—-modified date checking: don't re-download d:
that hasn't changed. The way it works is, the server sends some sort of hash of the data (in an ETag header) along
with the data you requested. Exactly how this hash is determined is entirely up to the server. The second time you
request the same data, you include the ETag hash in an If-None—Match: header, and if the data hasn't changed,
the server will send you back a 304 status code. As with the last-modified date checking, the server just sends the
304; it doesn't send you the same data a second time. By including the ETag hash in your second request, you're
telling the server that there's no need to re—send the same data if it still matches this hash, since you still have the (
from the last time.

Python's URL library has no built-in support for ETags, but you'll see how to add it later in this chapter.
11.3.5. Compression

The last important HTTP feature is gzip compression. When you talk about HTTP web services, you're almost alwa
talking about moving XML back and forth over the wire. XML is text, and quite verbose text at that, and text
generally compresses well. When you request a resource over HTTP, you can ask the server that, if it has any new
data to send you, to please send it in compressed format. You include the Accept—encoding: gzip header in

your request, and if the server supports compression, it will send you back gzip—compressed data and mark it with |
Content—-encoding: gzip header.

Python's URL library has no built—in support for gzip compression per se, but you can add arbitrary headers to the
request. And Python comes with a separate gzip module, which has functions you can use to decompress the data
yourself.

Note that our little one-line script to download a syndicated feed did not support any of these HTTP features. Let's
how you can improve it.

11.4. Debugging HTTP web services

First, let's turn on the debugging features of Python's HTTP library and see what's being sent over the wire. This wil
be useful throughout the chapter, as you add more and more features.

Example 11.3. Debugging HTTP

>>> import httplib
>>> httplib. HTTPConnection.debuglevel = 1 1]

Dive Into Python 153

>>> import urllib
>>> feeddata = urllib.urlopen(’http://diveintomark.org/xml/atom.xml").read(
connect: (diveintomark.org, 80)

send: '

GET /xml/atom.xml HTTP/1.0
Host: diveintomark.org
User—agent: Python-urllib/1.15

reply: '

@ 000

HTTP/1.1 200 OK\r\n'

header: Date: Wed, 14 Apr 2004 22:27:30 GMT
header: Server: Apache/2.0.49 (Debian GNU/Linux)
header: Content-Type: application/atom+xml

header: Last-Modified: Wed, 14 Apr 2004 22:14:38 GMT
header: ETag: "e8284-68e0-4de30f80"

@9

header: Accept—-Ranges: bytes
header: Content-Length: 26848
header: Connection: close

urllib relies on another standard Python library, httplib. Normally you don't need to

import httplib directly (urllib does that automatically), but you will here so you can

set the debugging flag on the HTTPConnection class that urllib uses internally to connect

to the HTTP server. This is an incredibly useful technique. Some other Python libraries have
similar debug flags, but there's no particular standard for naming them or turning them on; you
need to read the documentation of each library to see if such a feature is available.

Now that the debugging flag is set, information on the the HTTP request and response is printed
out in real time. The first thing it tells you is that you're connecting to the server
diveintomark.org on port 80, which is the standard port for HTTP.

When you request the Atom feed, urllib sends three lines to the server. The first line

specifies the HTTP verb you're using, and the path of the resource (minus the domain name).
All the requests in this chapter will use GET, but in the next chapter on SOAP, you'll see that it
uses POST for everything. The basic syntax is the same, regardless of the verb.

The second line is the Host header, which specifies the domain name of the service you're
accessing. This is important, because a single HTTP server can host multiple separate domains.
My server currently hosts 12 domains; other servers can host hundreds or even thousands.

The third line is the User—Agent header. What you see here is the generic User—Agent that
the urllib library adds by default. In the next section, you'll see how to customize this to be
more specific.

The server replies with a status code and a bunch of headers (and possibly some data, which got
stored in the feeddata variable). The status code here is 200, meaning "everything's normal,
here's the data you requested". The server also tells you the date it responded to your request,
some information about the server itself, and the content type of the data it's giving you.
Depending on your application, this might be useful, or not. It's certainly reassuring that you
thought you were asking for an Atom feed, and lo and behold, you're getting an Atom feed
(application/atom+xml, which is the registered content type for Atom feeds).

The server tells you when this Atom feed was last modified (in this case, about 13 minutes ago).
You can send this date back to the server the next time you request the same feed, and the
server can do last-modified checking.

The server also tells you that this Atom feed has an ETag hash of

"e8284-68e0-4de30f80". The hash doesn't mean anything by itself; there's nothing you

can do with it, except send it back to the server the next time you request this same feed. Then
the server can use it to tell you if the data has changed or not.

Dive Into Python 154

11.5. Setting the User—Agent

The first step to improving your HTTP web services client is to identify yourself properly with a User—Agent. To
do that, you need to move beyond the basic urllib and dive into urllib2.

Example 11.4. Introducing urllib2

>>> import httplib

>>> httplib. HTTPConnection.debuglevel = 1
>>> import urllib2

>>> request = urllib2.Request(‘http://diveintomark.org/xml/atom.xml")
>>> opener = urllib2.build_opener()

>>> feeddata = opener.open(request).read()
connect: (diveintomark.org, 80)

send: "’

GET /xml/atom.xml HTTP/1.0

Host: diveintomark.org

User—-agent: Python-urllib/2.1

oo® ©

reply: 'HTTP/1.1 200 OK\n\n'

header: Date: Wed, 14 Apr 2004 23:23:12 GMT

header: Server: Apache/2.0.49 (Debian GNU/Linux)
header: Content-Type: application/atom+xml

header: Last-Modified: Wed, 14 Apr 2004 22:14:38 GMT
header: ETag: "e8284-68e0-4de30f80"

header: Accept—-Ranges: bytes

header: Content-Length: 26848

header: Connection: close

O you still have your Python IDE open from the previous section's example, you can skip this, but this turns or

HTTP debugging so you can see what you're actually sending over the wire, and what gets sent back.
2] Fetching an HTTP resource with urllib2 is a three—step process, for good reasons that will become clear

shortly. The first step is to create a Request object, which takes the URL of the resource you'll eventually get

around to retrieving. Note that this step doesn't actually retrieve anything yet.

® The second step is to build a URL opener. This can take any number of handlers, which control how response
are handled. But you can also build an opener without any custom handlers, which is what you're doing here.

You'll see how to define and use custom handlers later in this chapter when you explore redirects.

@ Thefinal step is to tell the opener to open the URL, using the Request object you created. As you can see
from all the debugging information that gets printed, this step actually retrieves the resource and stores the
returned data in feeddata.

Example 11.5. Adding headers with the Request

>>> request (1]

<urllib2.Request instance at 0Ox00250AA8>

>>> request.get_full_url()

http://diveintomark.org/xml/atom.xml

>>> request.add_header('User—-Agent’,
'‘OpenAnything/1.0 +http://diveintopython.org/")

>>> feeddata = opener.open(request).read()

connect: (diveintomark.org, 80)

send: '

GET /xml/atom.xm|l HTTP/1.0

Host: diveintomark.org

User—agent: OpenAnything/1.0 +http://diveintopython.org/ (4]

o0

Dive Into Python 155

reply: 'HTTP/1.1 200 OK\r\n'

header: Date: Wed, 14 Apr 2004 23:45:17 GMT

header: Server: Apache/2.0.49 (Debian GNU/Linux)
header: Content-Type: application/atom+xmi

header: Last-Modified: Wed, 14 Apr 2004 22:14:38 GMT
header: ETag: "e8284-68e0-4de30f80"

header: Accept—-Ranges: bytes

header: Content-Length: 26848

header: Connection: close

Q voure continuing from the previous example; you've already created a Request object with the URL
you want to access.

124 Using the add_header method on the Request object, you can add arbitrary HTTP headers to the
request. The first argument is the header, the second is the value you're providing for that header.
Convention dictates that a User—Agent should be in this specific format: an application name,
followed by a slash, followed by a version number. The rest is free—form, and you'll see a lot of
variations in the wild, but somewhere it should include a URL of your application. The User-Agent
is usually logged by the server along with other details of your request, and including a URL of your
application allows server administrators looking through their access logs to contact you if something
is wrong.

® The opener object you created before can be reused too, and it will retrieve the same feed again, but
with your custom User—Agent header.

® And here's you sending your custom User—Agent, in place of the generic one that Python sends by
default. If you look closely, you'll notice that you defined a User—-Agent header, but you actually
sent a User—agent header. See the difference? urllib2 changed the case so that only the first
letter was capitalized. It doesn't really matter; HTTP specifies that header field names are completely
case-insensitive.

11.6. Handling Last—Modified and ETag

Now that you know how to add custom HTTP headers to your web service requests, let's look at adding support for
Last—-Modified and ETag headers.

These examples show the output with debugging turned off. If you still have it turned on from the previous section,
you can turn it off by setting httplib.HTTPConnection.debuglevel = 0. Or you can just leave debugging
on, if that helps you.

Example 11.6. Testing Last—Modified

>>> import urllib2

>>> request = urllib2.Request(’http://diveintomark.org/xml/atom.xml’)

>>> opener = urllib2.build_opener()

>>> firstdatastream = opener.open(request)

>>> firstdatastream.headers.dict (1]

{'date": 'Thu, 15 Apr 2004 20:42:41 GMT,

'server": 'Apache/2.0.49 (Debian GNU/Linux)',

‘content-type": ‘application/atom+xml’,

'last-modified: 'Thu, 15 Apr 2004 19:45:21 GMT",

‘etag": "'e842a-3e53-55d97640",

‘content-length': '15955',

'accept-ranges": 'bytes’,

‘connection’: ‘close'}

>>> request.add_header('If-Modified-Since’,
firstdatastream.headers.get('Last—Modified"))

>>> seconddatastream = opener.open(request)

o0

Dive Into Python 156

Traceback (most recent call last):
File "<stdin>", line 1, in ?
File "c:\python23\lib\urllib2.py", line 326, in open
' open', req)
File "c:\python23\lib\urllib2.py", line 306, in _call_chain
result = func(*args)
File "c:\python23\lib\urllib2.py", line 901, in http_open
return self.do_open(httplib.HTTP, req)
File "c:\python23\lib\urllib2.py", line 895, in do_open
return self.parent.error(‘http’, req, fp, code, msg, hdrs)
File "c:\python23\lib\urllib2.py", line 352, in error
return self._call_chain(*args)
File "c:\python23\lib\urllib2.py", line 306, in _call_chain
result = func(*args)
File "c:\python23\lib\urllib2.py", line 412, in http_error_default
raise HTTPError(req.get_full_url(), code, msg, hdrs, fp)
urllib2.HTTPError: HTTP Error 304: Not Modified

@ Remember all those HTTP headers you saw printed out when you turned on debugging? This is how you can
get access to them programmatically: firstdatastream.headers is an object that acts like a dictionary
and allows you to get any of the individual headers returned from the HTTP server.

® On the second request, you add the If-Modified-Since header with the last-modified date from the first
request. If the data hasn't changed, the server should return a 304 status code.

® sure enough, the data hasn't changed. You can see from the traceback that urllib2 throws a special
exception, HTTPError, in response to the 304 status code. This is a little unusual, and not entirely helpful.
After all, it's not an error; you specifically asked the server not to send you any data if it hadn't changed, and t
data didn't change, so the server told you it wasn't sending you any data. That's not an error; that's exactly wt
you were hoping for.

urllib2 also raises an HTTPError exception for conditions that you would think of as errors, such as 404 (page

not found). In fact, it will raise HTTPError for any status code other than 200 (OK), 301 (permanent redirect), or

302 (temporary redirect). It would be more helpful for your purposes to capture the status code and simply return it,

without throwing an exception. To do that, you'll need to define a custom URL handler.

Example 11.7. Defining URL handlers

This custom URL handler is part of openanything.py.

class DefaultErrorHandler(urllib2. HTTPDefaultErrorHandler):
def http_error_default(self, req, fp, code, msg, headers):
result = urllib2. HTTPError(
reqg.get_full_url(), code, msg, headers, fp)
result.status = code (3]
return result

©oe

Q urlib2is designed around URL handlers. Each handler is just a class that can define any number of
methods. When something happens —— like an HTTP error, or even a 304 code — urllib2 introspects into
the list of defined handlers for a method that can handle it. You used a similar introspection in Chapter 9, XML
Processing to define handlers for different node types, but urllib2 is more flexible, and introspects over as
many handlers as are defined for the current request.

® urlib2 searches through the defined handlers and calls the http_error_default method when it
encounters a 304 status code from the server. By defining a custom error handler, you can prevent urllib2
from raising an exception. Instead, you create the HTTPError object, but return it instead of raising it.

® Thisis the key part: before returning, you save the status code returned by the HTTP server. This will allow yc
easy access to it from the calling program.

Dive Into Python 157

Example 11.8. Using custom URL handlers

>>> request.headers (1]
{'If-modified—since": 'Thu, 15 Apr 2004 19:45:21 GMT'}

>>> jmport openanything

>>> opener = urllib2.build_opener(

openanything.DefaultErrorHandler()) (2]

>>> seconddatastream = opener.open(request)

>>> seconddatastream.status (3]

304

>>> seconddatastream.read() (4

Q voure continuing the previous example, so the Request object is already set up, and you've already added th
If-Modified—Since header.

® Thisis the key: now that you've defined your custom URL handler, you need to tell urllib2 to use it.
Remember how | said that urllib2 broke up the process of accessing an HTTP resource into three steps, and
for good reason? This is why building the URL opener is its own step, because you can build it with your own
custom URL handlers that override urllib2's default behavior.

® Now you can quietly open the resource, and what you get back is an object that, along with the usual headers
(use seconddatastream.headers.dict to acess them), also contains the HTTP status code. In this
case, as you expected, the status is 304, meaning this data hasn't changed since the last time you asked for i

(4

Note that when the server sends back a 304 status code, it doesn't re-send the data. That's the whole point: 1
save bandwidth by not re-downloading data that hasn't changed. So if you actually want that data, you'll neec
to cache it locally the first time you get it.

Handling ETag works much the same way, but instead of checking for Last—-Modified and sending
If-Modified-Since, you check for ETag and send If-None—Match. Let's start with a fresh IDE session.

Example 11.9. Supporting ETag/If-None—Match

>>> import urllib2, openanything
>>> request = urllib2.Request(’http://diveintomark.org/xml/atom.xml’)
>>> opener = urllib2.build_opener(

openanything.DefaultErrorHandler())

>>> firstdatastream = opener.open(request)
>>> firstdatastream.headers.get('ETag’) (1]
"'e842a-3e53-55d97640™
>>> firstdata = firstdatastream.read()
>>> print firstdata (2]
<?xml version="1.0" encoding="iso—-8859-1"?>
<feed version="0.3"
xmlins="http://purl.org/atom/ns#"
xmins:dc="http://purl.org/dc/elements/1.1/"
xml:lang="en">
<title mode="escaped">dive into mark</title>
<link rel="alternate" type="text/html" href="http://diveintomark.org/"/>
<—-rest of feed omitted for brevity ——>
>>> request.add_header('lf-None—Match’,

firstdatastream.headers.get('ETag")) (3]
>>> seconddatastream = opener.open(request)
>>> seconddatastream.status (4
304
>>> seconddatastream.read() (5]
1

Dive Into Python 158

Using the firstdatastream.headers pseudo-dictionary, you can get the ETag
returned from the server. (What happens if the server didn't send back an ETag? Then this line
would return None.)

OK, you got the data.

Now set up the second call by setting the If-None—Match header to the ETag you got from
the first call.

@ The second call succeeds quietly (without throwing an exception), and once again you see that
the server has sent back a 304 status code. Based on the ETag you sent the second time, it
knows that the data hasn't changed.

15/ Regardless of whether the 304 is triggered by Last—Modified date checking or ETag
hash matching, you'll never get the data along with the 304. That's the whole point.

@0

In these examples, the HTJ?P‘ server has supported both Last-Modified and ETag headers, but not all servers do.
As a web services client, you should be prepared to support both, but you must code defensively in case a server c
supports one or the other, or neither.

11.7. Handling redirects
You can support permanent and temporary redirects using a different kind of custom URL handler.

First, let's see why a redirect handler is necessary in the first place.

Example 11.10. Accessing web services without a redirect handler

>>> import urllib2, httplib

>>> httplib.HTTPConnection.debuglevel = 1 (1]
>>> request = urllib2.Request(
‘http://diveintomark.org/redir/example301.xml") (2]

>>> opener = urllib2.build_opener()
>>> f = opener.open(request)
connect: (diveintomark.org, 80)

send: '

GET /redir/example301.xml HTTP/1.0
Host: diveintomark.org

User—agent: Python-urllib/2.1

reply: 'HTTP/1.1 301 Moved Permanently\r\n' (3]
header: Date: Thu, 15 Apr 2004 22:06:25 GMT

header: Server: Apache/2.0.49 (Debian GNU/Linux)

header: Location: http://diveintomark.org/xml/atom.xml (4]
header: Content-Length: 338

header: Connection: close

header: Content-Type: text/html; charset=iso—8859-1

connect: (diveintomark.org, 80)

send: '

GET /xml/atom.xml HTTP/1.0 (5]
Host: diveintomark.org

User—agent: Python-urllib/2.1

reply: '"HTTP/1.1 200 OK\r\n'

header: Date: Thu, 15 Apr 2004 22:06:25 GMT

header: Server: Apache/2.0.49 (Debian GNU/Linux)
header: Last-Modified: Thu, 15 Apr 2004 19:45:21 GMT
header: ETag: "e842a-3e53-55d97640"

header: Accept-Ranges: bytes

header: Content-Length: 15955

header: Connection: close

Dive Into Python 159

header: Content-Type: application/atom+xml
>>> f.url (6]
‘http://diveintomark.org/xml/atom.xml’
>>> f.headers.dict
{'content-length'": '15955',
‘accept-ranges": 'bytes’,
'server': '‘Apache/2.0.49 (Debian GNU/Linux)',
'last-modified": 'Thu, 15 Apr 2004 19:45:21 GMT',
‘connection': ‘close’,
‘etag": "'e842a-3e53-55d97640",
‘date”: 'Thu, 15 Apr 2004 22:06:25 GMT',
‘content-type": 'application/atom+xml'}
>>> f.status
Traceback (most recent call last):
File "<stdin>", line 1, in ?
AttributeError: addinfourl instance has no attribute 'status’

@ 00 o oe

You'll be better able to see what's happening if you turn on debugging.

This is a URL which | have set up to permanently redirect to my Atom feed at
http://diveintomark.org/xml/atom.xml.

Sure enough, when you try to download the data at that address, the server sends back a 301 status code, te
you that the resource has moved permanently.

The server also sends back a Location: header that gives the new address of this data.

urllib2 notices the redirect status code and automatically tries to retrieve the data at the new location
specified in the Location: header.

The object you get back from the opener contains the new permanent address and all the headers returned
from the second request (retrieved from the new permanent address). But the status code is missing, so you
have no way of knowing programmatically whether this redirect was temporary or permanent. And that matter
very much: if it was a temporary redirect, then you should continue to ask for the data at the old location. But |

it was a permanent redirect (as this was), you should ask for the data at the new location from now on.

This is suboptimal, but easy to fix. urllib2 doesn't behave exactly as you want it to when it encounters a 301 or
302, so let's override its behavior. How? With a custom URL handler, just like you did to handle 304 codes.

Example 11.11. Defining the redirect handler

This class is defined in openanything.py.

class SmartRedirectHandler(urllib2.HTTPRedirectHandler): (1]
def http_error_301(self, req, fp, code, msg, headers):
result = urllib2. HTTPRedirectHandler.http_error_301((2]

self, req, fp, code, msg, headers)
result.status = code (3]
return result

def http_error_302(self, req, fp, code, msg, headers): (4
result = urllib2. HTTPRedirectHandler.http_error_302(
self, req, fp, code, msg, headers)
result.status = code
return result

® Redirect behavior is defined in urllib2 in a class called HTTPRedirectHandler. You
don't want to completely override the behavior, you just want to extend it a little, so you'll
subclass HTTPRedirectHandler so you can call the ancestor class to do all the hard work.
(2]

Dive Into Python 160

When it encounters a 301 status code from the server, urllib2 will search through its handlers
and call the http_error_301 method. The first thing ours does is just call the

http_error_301 method in the ancestor, which handles the grunt work of looking for the
Location: header and following the redirect to the new address.

® Here'sthe key: before you return, you store the status code (301), so that the calling program can
access it later.

o Temporary redirects (status code 302) work the same way: override the http_error_302
method, call the ancestor, and save the status code before returning.

So what has this bought us? You can now build a URL opener with the custom redirect handler, and it will still
automatically follow redirects, but now it will also expose the redirect status code.

Example 11.12. Using the redirect handler to detect permanent redirects

>>> request = urllib2.Request('http://diveintomark.org/redir/example301.xml")
>>> import openanything, httplib
>>> httplib.HTTPConnection.debuglevel = 1
>>> opener = urllib2.build_opener(
openanything.SmartRedirectHandler()) 1]
>>> f = opener.open(request)
connect: (diveintomark.org, 80)
send: 'GET /redir/lexample301.xml HTTP/1.0
Host: diveintomark.org
User—agent: Python-urllib/2.1

reply: 'HTTP/1.1 301 Moved Permanently\r\n' (2]
header: Date: Thu, 15 Apr 2004 22:13:21 GMT
header: Server: Apache/2.0.49 (Debian GNU/Linux)
header: Location: http://diveintomark.org/xml/atom.xml
header: Content-Length: 338

header: Connection: close

header: Content-Type: text/html; charset=iso—8859-1
connect: (diveintomark.org, 80)

send: '

GET /xml/atom.xml HTTP/1.0

Host: diveintomark.org

User—agent: Python-urllib/2.1

reply: 'HTTP/1.1 200 OK\r\n'

header: Date: Thu, 15 Apr 2004 22:13:21 GMT

header: Server: Apache/2.0.49 (Debian GNU/Linux)
header: Last-Modified: Thu, 15 Apr 2004 19:45:21 GMT
header: ETag: "e842a-3e53-55d97640"

header: Accept-Ranges: bytes

header: Content-Length: 15955

header: Connection: close

header: Content-Type: application/atom+xml

>>> f.status (3]
301
>>> f.url

‘http://diveintomark.org/xml/atom.xml’

Q First, build a URL opener with the redirect handler you just defined.

® vYousentoffa request, and you got a 301 status code in response. At this point, the http_error_301
method gets called. You call the ancestor method, which follows the redirect and sends a request at the new
location (http://diveintomark.org/xml/atom.xml).

Dive Into Python 161

® This is the payoff: now, not only do you have access to the new URL, but you have access to the redirect stat
code, so you can tell that this was a permanent redirect. The next time you request this data, you should requ
it from the new location (http://diveintomark.org/xml/atom.xml, as specified in f.url). If you
had stored the location in a configuration file or a database, you need to update that so you don't keep poundi
the server with requests at the old address. It's time to update your address book.

The same redirect handler can also tell you that you shouldn't update your address book.

Example 11.13. Using the redirect handler to detect temporary redirects

>>> request = urllib2.Request(
‘http://diveintomark.org/redir/example302.xml")

>>> f = opener.open(request)

connect: (diveintomark.org, 80)

send: '

GET /redir/example302.xml HTTP/1.0

Host: diveintomark.org

User—agent: Python-urllib/2.1

reply: 'HTTP/1.1 302 Found\r\n'

header: Date: Thu, 15 Apr 2004 22:18:21 GMT
header: Server: Apache/2.0.49 (Debian GNU/Linux)
header: Location: http://diveintomark.org/xml/atom.xml
header: Content-Length: 314

header: Connection: close

header: Content-Type: text/html; charset=iso—-8859-1
connect: (diveintomark.org, 80)

send: '

GET /xml/atom.xml HTTP/1.0

Host: diveintomark.org

User—agent: Python-urllib/2.1

reply: 'HTTP/1.1 200 OK\r\n'

header: Date: Thu, 15 Apr 2004 22:18:21 GMT
header: Server: Apache/2.0.49 (Debian GNU/Linux)
header: Last-Modified: Thu, 15 Apr 2004 19:45:21 GMT
header: ETag: "e842a-3e53-55d97640"

header: Accept-Ranges: bytes

header: Content-Length: 15955

header: Connection: close

header: Content-Type: application/atom+xml

>>> f.status

302

>>> f.url

http://diveintomark.org/xml/atom.xml

Q@ Thisisa sample URL I've set up that is configured to tell clients to temporarily redirect to

http://diveintomark.org/xml/atom.xml.

® The server sends back a 302 status code, indicating a temporary redirect. The temporary new location of the

data is given in the Location: header.

® urlib2 calls your http_error_302 method, which calls the ancestor method of the same name in
urllib2. HTTPRedirectHandler, which follows the redirect to the new location. Then your
http_error_302 method stores the status code (302) so the calling application can get it later.

® And here you are, having successfully followed the redirect to
http://diveintomark.org/xml/atom.xml. f.status tells you that this was a temporary redirect,
which means that you should continue to request data from the original address
(http://diveintomark.org/redir/fexample302.xml). Maybe it will redirect next time too, but

Dive Into Python

162

maybe not. Maybe it will redirect to a different address. It's not for you to say. The server said this redirect wa:
only temporary, so you should respect that. And now you're exposing enough information that the calling
application can respect that.

11.8. Handling compressed data

The last important HTTP feature you want to support is compression. Many web services have the ability to send di
compressed, which can cut down the amount of data sent over the wire by 60% or more. This is especially true of
XML web services, since XML data compresses very well.

Servers won't give you compressed data unless you tell them you can handle it.

Example 11.14. Telling the server you would like compressed data

>>> import urllib2, httplib

>>> httplib. HTTPConnection.debuglevel = 1

>>> request = urllib2.Request('http://diveintomark.org/xml/atom.xml’)

>>> request.add_header('Accept-encoding’, 'gzip") 1]
>>> opener = urllib2.build_opener()

>>> f = opener.open(request)

connect: (diveintomark.org, 80)

send: "’

GET /xml/atom.xml HTTP/1.0

Host: diveintomark.org

User—agent: Python-urllib/2.1

Accept-encoding: gzip (2]

reply: 'HTTP/1.1 200 OK\n\n'

header: Date: Thu, 15 Apr 2004 22:24:39 GMT
header: Server: Apache/2.0.49 (Debian GNU/Linux)
header: Last-Modified: Thu, 15 Apr 2004 19:45:21 GMT
header: ETag: "e842a-3e53-55d97640"

header: Accept—Ranges: bytes

header: Vary: Accept—-Encoding

header: Content-Encoding: gzip

header: Content-Length: 6289

header: Connection: close

header: Content-Type: application/atom+xml

oo

Q Thisis the key: once you've created your Request object, add an Accept—-encoding header to tell the
server you can accept gzip—encoded data. gzip is the name of the compression algorithm you're using. In
theory there could be other compression algorithms, but gzip is the compression algorithm used by 99% of
web servers.

There's your header going across the wire.

And here's what the server sends back: the Content—Encoding: gzip header means that the data you're
about to receive has been gzip—compressed.

Q@ The Content-Length header is the length of the compressed data, not the uncompressed data. As you'll see
in a minute, the actual length of the uncompressed data was 15955, so gzip compression cut your bandwidth
over 60%!

@0

Example 11.15. Decompressing the data

>>> compresseddata = f.read() (1]
>>> |len(compresseddata)

6289

>>> import StringlO

Dive Into Python 163

>>> compressedstream = StringlO.StringlO(compresseddata)
>>> import gzip

>>> gzipper = gzip.GzipFile(fileobj=compressedstream)

>>> data = gzipper.read()

>>> print data

e0® ©

<?xml version="1.0" encoding="iso—8859-1"?>

<feed version="0.3"
xmins="http://purl.org/atom/ns#"
xmins:dc="http://purl.org/dc/elements/1.1/"
xml:lang="en">
<title mode="escaped">dive into mark</title>
<link rel="alternate" type="text/html" href="http://diveintomark.org/"/>
<—-rest of feed omitted for brevity ——>

>>> |en(data)

15955

5]

Continuing from the previous example, f is the file-like object returned from the URL opener.
Using its read() method would ordinarily get you the uncompressed data, but since this data
has been gzip—compressed, this is just the first step towards getting the data you really want.

OK, this step is a little bit of messy workaround. Python has a gzip module, which reads (and
actually writes) gzip—compressed files on disk. But you don't have a file on disk, you have a
gzip—compressed buffer in memory, and you don't want to write out a temporary file just so you
can uncompress it. So what you're going to do is create a file—like object out of the in—-memory
data (compresseddata), using the StringlO module. You first saw the StringlO

module in the previous chapter, but now you've found another use for it.

Now you can create an instance of GzipFile, and tell it that its "file" is the file—like object
compressedstream.

This is the line that does all the actual work: "reading" from GzipFile will decompress the

data. Strange? Yes, but it makes sense in a twisted kind of way. gzipper is a file-like object
which represents a gzip—compressed file. That “file" is not a real file on disk, though; gzipper
is really just "reading"” from the file—like object you created with StringlO to wrap the
compressed data, which is only in memory in the variable compresseddata. And where did
that compressed data come from? You originally downloaded it from a remote HTTP server by
"reading"” from the file—like object you built with urllib2.build_opener. And amazingly,

this all just works. Every step in the chain has no idea that the previous step is faking it.

Look ma, real data. (15955 bytes of it, in fact.)

"But wait!" | hear you cry. "This could be even easier!" | know what you're thinking. You're thinking that
opener.open returns a file-like object, so why not cut out the StringlO middleman and just pass f directly to
GzipFile? OK, maybe you weren't thinking that, but don't worry about it, because it doesn't work.

Example 11.16. Decompressing the data directly from the server

>>> f = opener.open(request) (1]
>>> f.headers.get('Content-Encoding’) (2]
ngIpl

>>> data = gzip.GzipFile(fileobj=f).read() (3]

Traceback (most recent call last):
File "<stdin>", line 1, in ?
File "c:\python23\lib\gzip.py", line 217, in read
self._read(readsize)
File "c:\python23\lib\gzip.py", line 252, in _read
pos = self.fileobj.tell() # Save current position
AttributeError: addinfourl instance has no attribute 'tell’

Dive Into Python

164

Continuing from the previous example, you already have a Request object set up with an
Accept—encoding: gzip header.

Simply opening the request will get you the headers (though not download any data yet). As you can see from
the returned Content—Encoding header, this data has been sent gzip—compressed.

Since opener.open returns a file—like object, and you know from the headers that when you read it, you're
going to get gzip—compressed data, why not simply pass that file-like object directly to GzipFile? As you
"read" from the GzipFile instance, it will "read" compressed data from the remote HTTP server and
decompress it on the fly. It's a good idea, but unfortunately it doesn't work. Because of the way gzip
compression works, GzipFile needs to save its position and move forwards and backwards through the
compressed file. This doesn't work when the "file" is a stream of bytes coming from a remote server; all you
can do with it is retrieve bytes one at a time, not move back and forth through the data stream. So the inelega
hack of using StringlO is the best solution: download the compressed data, create a file—like object out of it
with StringlO, and then decompress the data from that.

11.9. Putting it all together

You've seen all the pieces for building an intelligent HTTP web services client. Now let's see how they all fit togethe

Example 11.17. The openanything function

This function is defined in openanything.py.

def openAnything(source, etag=None, lastmodified=None, agent=USER_AGENT):
non—-HTTP code omitted for brevity

if urlparse.urlparse(source)[0] == 'http":
open URL with urllib2
request = urllib2.Request(source)
request.add_header('User-Agent’, agent)
if etag:

®

@000

7]

if lastmodified:

request.add_header('Accept—encoding’, 'gzip')
opener = urllib2.build_opener(SmartRedirectHandler(), DefaultErrorHandler())
return opener.open(request)

request.add_header('lf-None—-Match', etag)

request.add_header('If-Modified—Since', lastmodified)

Q00 @ ©

urlparse is a handy utility module for, you guessed it, parsing URLSs. It's primary function, also called

urlparse, takes a URL and splits it into a tuple of (scheme, domain, path, params, query string parameters,
and fragment identifier). Of these, the only thing you care about is the scheme, to make sure that you're dealil
with an HTTP URL (which urllib2 can handle).

You identify yourself to the HTTP server with the User—Agent passed in by the calling function. If no
User—Agent was specified, you use a default one defined earlier in the openanything.py module. You
never use the default one defined by urllib2.

If an ETag hash was given, send it in the If-None—Match header.
If a last—-modified date was given, send it in the If-Modified—Since header.
Tell the server you would like compressed data if possible.

Build a URL opener that uses both of the custom URL handlers: SmartRedirectHandler for handling
301 and 302 redirects, and DefaultErrorHandler for handling 304, 404, and other error conditions
gracefully.

That's it! Open the URL and return a file—like object to the caller.

Example 11.18. The fetch function

Dive Into Python 165

This function is defined in openanything.py.

def fetch(source, etag=None, last_modified=None, agent=USER_AGENT):
"'Fetch data and metadata from a URL, file, stream, or string"
result = {}

f = openAnything(source, etag, last_modified, agent) (1]
result['data’] = f.read() (2]
if hasattr(f, 'headers'):
save ETag, if the server sent one
result['etag'] = f.headers.get('ETag'") (3]
save Last—Modified header, if the server sent one
result['lastmodified’] = f.headers.get('Last—Modified") (4
if f.headers.get(‘content-encoding’, ") == 'gzip" (5]

data came back gzip—compressed, decompress it
result['data’] = gzip.GzipFile(fileobj=StringlO(result['data’]])).read()
if hasattr(f, 'url’): (6
result['url] = f.url
result['status’] = 200

if hasattr(f, 'status’): 7]
result['status’] = f.status
f.close()

return result

Q9 Fist, you call the openAnything function with a URL, ETag hash, Last-Modified date, and
User—Agent.

Read the actual data returned from the server. This may be compressed; if so, you'll decompress it later.

Save the ETag hash returned from the server, so the calling application can pass it back to you next time, anc
you can pass it on to openAnything, which can stick it in the If-None—Match header and send it to the
remote server.

Save the Last-Modified date too.
If the server says that it sent compressed data, decompress it.

If you got a URL back from the server, save it, and assume that the status code is 200 until you find out
otherwise.

®@0Q

@00

If one of the custom URL handlers captured a status code, then save that too.

Example 11.19. Using openanything.py

>>> import openanything
>>> useragent = 'MyHTTPWebServicesApp/1.0'
>>> url = 'http://diveintopython.org/redir/example301.xml'
>>> params = openanything.fetch(url, agent=useragent)
>>> params
{'url": "http://diveintomark.org/xml/atom.xml’,
'lastmodified": 'Thu, 15 Apr 2004 19:45:21 GMT,
‘etag": "'e842a-3e53-55d97640",
'status': 301,
'data’: '<?xml version="1.0" encoding="iso—8859-1"?>
<feed version="0.3"
<—-rest of data omitted for brevity ——>"}
>>> if params|['status'] == 301: (3]
url = paramsJ['url']
>>> newparams = openanything.fetch(
url, params['etag'], params['lastmodified'], useragent) 4]
>>> newparams
{'url": "http://diveintomark.org/xml/atom.xml’,
'lastmodified": None,
‘etag": ""'e842a-3e53-55d97640™,
'status’: 304,

ol

Dive Into Python 166

‘data’: "} (5]

(2]

(5]

The very first time you fetch a resource, you don't have an ETag hash or Last—-Modified date, so you'll
leave those out. (They're optional parameters.)

What you get back is a dictionary of several useful headers, the HTTP status code, and the actual data return
from the server. openanything handles the gzip compression internally; you don't care about that at this
level.

If you ever get a 301 status code, that's a permanent redirect, and you need to update your URL to the new
address.

The second time you fetch the same resource, you have all sorts of information to pass back: a (possibly
updated) URL, the ETag from the last time, the Last—Modified date from the last time, and of course your
User—Agent.

What you get back is again a dictionary, but the data hasn't changed, so all you got was a 304 status code an
no data.

11.10. Summary

The openanything.py and its functions should now make perfect sense.

There are 5 important features of HTTP web services that every client should support:

« Identifying your application by setting a proper User—Agent.

» Handling permanent redirects properly.

» Supporting Last—-Modified date checking to avoid re—downloading data that hasn't changed.
» Supporting ETag hashes to avoid re-downloading data that hasn't changed.

 Supporting gzip compression to reduce bandwidth even when data has changed.

Dive Into Python 167

Chapter 12. SOAP Web Services

Chapter 11 focused on document-oriented web services over HTTP. The "input parameter" was the URL, and the
"return value" was an actual XML document which it was your responsibility to parse.

This chapter will focus on SOAP web services, which take a more structured approach. Rather than dealing with
HTTP requests and XML documents directly, SOAP allows you to simulate calling functions that return native data
types. As you will see, the illusion is almost perfect; you can "call" a function through a SOAP library, with the
standard Python calling syntax, and the function appears to return Python objects and values. But under the covers
SOAP library has actually performed a complex transaction involving multiple XML documents and a remote server

SOAP is a complex specification, and it is somewhat misleading to say that SOAP is all about calling remote
functions. Some people would pipe up to add that SOAP allows for one—-way asynchronous message passing, and
document-oriented web services. And those people would be correct; SOAP can be used that way, and in many
different ways. But this chapter will focus on so—called "RPC-style” SOAP —- calling a remote function and getting
results back.

12.1. Diving In

You use Google, right? It's a popular search engine. Have you ever wished you could programmatically access Go
search results? Now you can. Here is a program to search Google from Python.

Example 12.1. search.py

from SOAPpy import WSDL

you'll need to configure these two values;

see http://www.google.com/apis/

WSDLFILE = '/path/to/copy/of/GoogleSearch.wsdl'
APIKEY ="YOUR_GOOGLE_API_KEY'

_server = WSDL.Proxy(WSDLFILE)
def search(q):
""" Search Google and return list of {title, link, description}""
results = _server.doGoogleSearch(
APIKEY, q, 0, 10, False, ", False, "™, "utf-8", "utf-8")
return [{"title": r.title.encode("utf-8"),
"link": r.URL.encode("utf-8"),
"description": r.snippet.encode("utf-8")}
for r in results.resultElements]

if _name__ =='_ main__"
import sys
for r in search(sys.argv[1])[:5]:
print r['title]
print r['link’]
print r['description’]
print

You can import this as a module and use it from a larger program, or you can run the script from the command line.
On the command line, you give the search query as a command-line argument, and it prints out the URL, title, and
description of the top five Google search results.

Here is the sample output for a search for the word "python".

Dive Into Python 168

Example 12.2. Sample Usage of search.py

C:\diveintopython\common\py> python search.py "python”
Python Programming Language

http://www.python.org/

Home page for Python, an interpreted, interactive, object-oriented,
extensible
 programming language. ... Python

is OSI Certified Open Source: OSI Certified.

Python Documentation Index

http://www.python.org/doc/

... New-style classes (aka descrintro). Regular expressions. Database
API. Email Us.
 docs@python.org. (c) 2004. Python
Software Foundation. Python Documentation. ...

Download Python Software

http://www.python.org/download/

Download Standard Python Software. Python 2.3.3 is the
current production
 version of Python. ...
Python is OSI Certified Open Source:

Pythonline
http://www.pythonline.com/

Dive Into Python

http://diveintopython.org/

Dive Into Python. Python from novice to pro. Find:
... It is also available in multiple
 languages. Read

Dive Into Python. This book is still being written. ...

Further Reading on SOAP

* http://lwww.xmethods.net/ is a repository of public access SOAP web services.

» The SOAP specification (http://www.w3.0rg/TR/soap/) is surprisingly readable, if you like that sort of thing.

12.2. Installing the SOAP Libraries

Unlike the other code in this book, this chapter relies on libraries that do not come pre—installed with Python.

Before you can dive into SOAP web services, you'll need to install three libraries: PyXML, fpconst, and SOAPpy.

12.2.1. Installing PyXML

The first library you need is PyXML, an advanced set of XML libraries that provide more functionality than the

built=in XML libraries we studied in Chapter 9.
Procedure 12.1.

Here is the procedure for installing PyXML:

1. Go to http://pyxml.sourceforge.net/, click Downloads, and download the latest version for your operating

system.

2.If you are using Windows, there are several choices. Make sure to download the version of PyXML that

matches the version of Python you are using.

3. Double—click the installer. If you download PyXML 0.8.3 for Windows and Python 2.3, the installer program

Dive Into Python

169

http://www.xmethods.net/
http://www.w3.org/TR/soap/
http://pyxml.sourceforge.net/

will be PyXML-0.8.3.win32-py2.3.exe.

4. Step through the installer program.

5. After the installation is complete, close the installer. There will not be any visible indication of success (no
programs installed on the Start Menu or shortcuts installed on the desktop). PyXML is simply a collection of
XML libraries used by other programs.

To verify that you installed PyXML correctly, run your Python IDE and check the version of the XML libraries you
have installed, as shown here.

Example 12.3. Verifying PyXML Installation

>>> import xml
>>> xml.__version__
'0.8.3'

This version number should match the version number of the PyXML installer program you downloaded and ran.
12.2.2. Installing fpconst

The second library you need is fpconst, a set of constants and functions for working with IEEE754 double—precisior
special values. This provides support for the special values Not—-a—Number (NaN), Positive Infinity (Inf), and
Negative Infinity (=Inf), which are part of the SOAP datatype specification.

Procedure 12.2.
Here is the procedure for installing fpconst:

1. Download the latest version of fpconst from
http://lwww.analytics.washington.edu/statcomp/projects/rzope/fpconst/.

2. There are two downloads available, one in .tar.gz format, the other in .zip format. If you are using
Windows, download the .zip file; otherwise, download the .tar.gz file.

3. Decompress the downloaded file. On Windows XP, you can right—click on the file and choose Extract All; on
earlier versions of Windows, you will need a third—party program such as WinZip. On Mac OS X, you can
double—click the compressed file to decompress it with Stuffit Expander.

4. 0Open a command prompt and navigate to the directory where you decompressed the fpconst files.

5. Typepython setup.py install to run the installation program.

To verify that you installed fpconst correctly, run your Python IDE and check the version number.

Example 12.4. Verifying fpconst Installation

>>> import fpconst
>>> fpconst.__version__
'0.6.0'

This version number should match the version number of the fpconst archive you downloaded and installed.

12.2.3. Installing SOAPpy

The third and final requirement is the SOAP library itself: SOAPpy.

Dive Into Python 170

http://www.analytics.washington.edu/statcomp/projects/rzope/fpconst/

Procedure 12.3.
Here is the procedure for installing SOAPpy:
1. Go to http://pywebsvcs.sourceforge.net/ and select Latest Official Release under the SOAPpy section.
2. There are two downloads available. If you are using Windows, download the .zip file; otherwise, download
the .tar.gz file.
3. Decompress the downloaded file, just as you did with fpconst.
4. 0Open a command prompt and navigate to the directory where you decompressed the SOAPpy files.
5. Typepython setup.py install to run the installation program.

To verify that you installed SOAPpy correctly, run your Python IDE and check the version number.

Example 12.5. Verifying SOAPpy Installation

>>> import SOAPpy
>>> SOAPpy.__version__
'0.11.4

This version number should match the version number of the SOAPpy archive you downloaded and installed.

12.3. First Steps with SOAP

The heart of SOAP is the ability to call remote functions. There are a number of public access SOAP servers that
provide simple functions for demonstration purposes.

The most popular public access SOAP server is http://www.xmethods.net/. This example uses a demonstration
function that takes a United States zip code and returns the current temperature in that region.

Example 12.6. Getting the Current Temperature

>>> from SOAPpy import SOAPProxy 1]
>>> url = 'http://services.xmethods.net:80/soap/servlet/rpcrouter'
>>> namespace = 'urn:xmethods—-Temperature'

>>> server = SOAPProxy(url, namespace) (3]
>>> server.getTemp('27502") (4]
80.0

® vYou access the remote SOAP server through a proxy class, SOAPProxy. The proxy handles all the internals «
SOAP for you, including creating the XML request document out of the function name and argument list,
sending the request over HTTP to the remote SOAP server, parsing the XML response document, and creatir
native Python values to return. You'll see what these XML documents look like in the next section.

2] Every SOAP service has a URL which handles all the requests. The same URL is used for all function calls.
This particular service only has a single function, but later in this chapter you'll see examples of the Google
API, which has several functions. The service URL is shared by all functions.Each SOAP service also has a
namespace, which is defined by the server and is completely arbitrary. It's simply part of the configuration
required to call SOAP methods. It allows the server to share a single service URL and route requests betweel
several unrelated services. It's like dividing Python modules into packages.

® voure creating the SOAPProxy with the service URL and the service namespace. This doesn't make any
connection to the SOAP server; it simply creates a local Python object.

Dive Into Python 171

http://pywebsvcs.sourceforge.net/
http://www.xmethods.net/

@ Now with everything configured properly, you can actually call remote SOAP methods as if they were local
functions. You pass arguments just like a normal function, and you get a return value just like a normal
function. But under the covers, there's a heck of a lot going on.

Let's peek under those covers.

12.4. Debugging SOAP Web Services

The SOAP libraries provide an easy way to see what's going on behind the scenes.

Turning on debugging is a simple matter of setting two flags in the SOAPProxy's configuration.

Example 12.7. Debugging SOAP Web Services

>>> from SOAPpy import SOAPProxy
>>> url = 'http://services.xmethods.net:80/soap/servlet/rpcrouter'
>>> n = 'urn:xmethods-Temperature'

>>> server = SOAPProxy(url, namespace=n) 1]
>>> server.config.dumpSOAPOuUt = 1 (2]
>>> server.config.dumpSOAPIn = 1

>>> temperature = server.getTemp('27502") (3]

*** Qutgoing SOAP

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmins:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmins:xsi="http://www.w3.0rg/1999/XMLSchema-instance"
xmIns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmins:xsd="http://www.w3.0rg/1999/XMLSchema">

<SOAP-ENV:Body>

<nsl:getTemp xmlIns:ns1="urn:xmethods—-Temperature" SOAP-ENC:root="1">

<v1 xsi:type="xsd:string">27502</v1>

</nsl:getTemp>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

*** Incoming SOAP

<?xml version="1.0" encoding="UTF-8'?>

<SOAP-ENV:Envelope xmIns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlins:xsd="http://www.w3.0rg/2001/XMLSchema">

<SOAP-ENV:Body>

<nsl:getTempResponse xmins:ns1="urn:xmethods—-Temperature"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<return xsi:type="xsd:float">80.0</return>

</nsl:getTempResponse>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

>>> temperature
80.0

(1] First, create the SOAPProxy like normal, with the service URL and the namespace.

® Ssecond, turn on debugging by setting server.config.dumpSOAPIn and
server.config.dumpSOAPOuLt.

® Third, call the remote SOAP method as usual. The SOAP library will print out both the outgoing XML request

Dive Into Python 172

document, and the incoming XML response document. This is all the hard work that SOAPProxy is doing for
you. Intimidating, isn't it? Let's break it down.
Most of the XML request document that gets sent to the server is just boilerplate. Ignore all the namespace
declarations; they're going to be the same (or similar) for all SOAP calls. The heart of the "function call" is this
fragment within the <Body> element:

<nsl:getTemp
xmins:ns1="urn:xmethods—Temperature"
SOAP-ENC:root="1">

<v1 xsi:type="xsd:string">27502</v1> ©

</nsl:getTemp>

oe

@ The element name is the function name, getTemp. SOAPProxy uses getattr as a dispatcher. Instead of
calling separate local methods based on the method name, it actually uses the method name to construct the
XML request document.

® The function's XML element is contained in a specific namespace, which is the namespace you specified whe
you created the SOAPProxy object. Don't worry about the SOAP-ENC:root; that's boilerplate too.

® The arguments of the function also got translated into XML. SOAPProxy introspects each argument to
determine its datatype (in this case it's a string). The argument datatype goes into the xsi:type attribute,
followed by the actual string value.

The XML return document is equally easy to understand, once you know what to ignore. Focus on this fragment

within the <Body>:

<nsl:getTempResponse (1]
xmins:ns1="urn:xmethods—-Temperature" (2]
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<return xsi:type="xsd:float">80.0</return> (3]

</nsl:getTempResponse>

Q@ The server wraps the function return value within a <getTempResponse> element. By convention, this
wrapper element is the name of the function, plus Response. But it could really be almost anything; the
important thing that SOAPProxy notices is not the element name, but the namespace.

® The server returns the response in the same namespace we used in the request, the same namespace we
specified when we first create the SOAPProxy. Later in this chapter we'll see what happens if you forget to
specify the namespace when creating the SOAPProxy.

® The return value is specified, along with its datatype (it's a float). SOAPProxy uses this explicit datatype to
create a Python object of the correct native datatype and return it.

12.5. Introducing WSDL

The SOAPProxy class proxies local method calls and transparently turns then into invocations of remote SOAP
methods. As you've seen, this is a lot of work, and SOAPProxy does it quickly and transparently. What it doesn't do
is provide any means of method introspection.

Consider this: the previous two sections showed an example of calling a simple remote SOAP method with one
argument and one return value, both of simple data types. This required knowing, and keeping track of, the service
URL, the service hamespace, the function name, the number of arguments, and the datatype of each argument. If ¢
of these is missing or wrong, the whole thing falls apart.

That shouldn't come as a big surprise. If | wanted to call a local function, | would need to know what package or
module it was in (the equivalent of service URL and namespace). | would need to know the correct function name a
the correct number of arguments. Python deftly handles datatyping without explicit types, but | would still need to
know how many argument to pass, and how many return values to expect.

Dive Into Python 173

The big difference is introspection. As you saw in Chapter 4, Python excels at letting you discover things about
modules and functions at runtime. You can list the available functions within a module, and with a little work, drill
down to individual function declarations and arguments.

WSDL lets you do that with SOAP web services. WSDL stands for "Web Services Description Language". Although
designed to be flexible enough to describe many types of web services, it is most often used to describe SOAP wel
services.

A WSDL file is just that: a file. More specifically, it's an XML file. It usually lives on the same server you use to
access the SOAP web services it describes, although there's nothing special about it. Later in this chapter, we'll
download the WSDL file for the Google API and use it locally. That doesn't mean we're calling Google locally; the
WSDL file still describes the remote functions sitting on Google's server.

A WSDL file contains a description of everything involved in calling a SOAP web service:

* The service URL and namespace

» The type of web service (probably function calls using SOAP, although as | mentioned, WSDL is flexible
enough to describe a wide variety of web services)

* The list of available functions

« The arguments for each function

* The datatype of each argument

* The return values of each function, and the datatype of each return value

In other words, a WSDL file tells you everything you need to know to be able to call a SOAP web service.

12.6. Introspecting SOAP Web Services with WSDL

Like many things in the web services arena, WSDL has a long and checkered history, full of political strife and
intrigue. | will skip over this history entirely, since it bores me to tears. There were other standards that tried to do
similar things, but WSDL won, so let's learn how to use it.

The most fundamental thing that WSDL allows you to do is discover the available methods offered by a SOAP serv

Example 12.8. Discovering The Available Methods

>>> from SOAPpy import WSDL (1]

>>> wsdlFile = 'http://www.xmethods.net/sd/2001/TemperatureService.wsdl’)
>>> server = WSDL.Proxy(wsdlIFile)

>>> server.methods.keys() (3]

[u'getTemp']

o SOAPpy includes a WSDL parser. At the time of this writing, it was labeled as being in the early stages of
development, but | had no problem parsing any of the WSDL files | tried.

® 1o use a WSDL file, you again use a proxy class, WSDL.Proxy, which takes a single argument: the WSDL
file. Note that in this case you are passing in the URL of a WSDL file stored on the remote server, but the pro:
class works just as well with a local copy of the WSDL file. The act of creating the WSDL proxy will download
the WSDL file and parse it, so it there are any errors in the WSDL file (or it can't be fetched due to networking
problems), you'll know about it immediately.

® ThewsDL proxy class exposes the available functions as a Python dictionary, server.methods. So getting
the list of available methods is as simple as calling the dictionary method keys().

Dive Into Python 174

Okay, so you know that this SOAP server offers a single method: getTemp. But how do you call it? The WSDL
proxy object can tell you that too.

Example 12.9. Discovering A Method's Arguments

>>> callinfo = server.methods['getTemp'] (1]

>>> callinfo.inparams (2]
[<SOAPpy.wstools.WSDLTools.Parameterinfo instance at 0OXOOCF3ADO0>]
>>> calllnfo.inparams[0].name (3]

u'zipcode'

>>> calllnfo.inparams[0].type 4]

(u'http://mvww.w3.0rg/2001/XMLSchema’, u'string’)

©® The server.methods dictionary is filled with a SOAPpy-specific structure called Callinfo. A
Callinfo object contains information about one specific function, including the function arguments.

® The function arguments are stored in callinfo.inparams, which is a Python list of Parameterinfo
objects that hold information about each parameter.

® Each Parameterinfo object contains a name attribute, which is the argument name. You are not required to
know the argument name to call the function through SOAP, but SOAP does support calling functions with
named arguments (just like Python), and WSDL.Proxy will correctly handle mapping named arguments to the
remote function if you choose to use them.

@ Each parameter is also explicitly typed, using datatypes defined in XML Schema. You saw this in the wire trac
in the previous section; the XML Schema namespace was part of the "boilerplate” | told you to ignore. For our
purposes here, you may continue to ignore it. The zipcode parameter is a string, and if you pass in a Python
string to the WSDL.Proxy object, it will map it correctly and send it to the server.

WSDL also lets you introspect into a function's return values.

Example 12.10. Discovering A Method's Return Values

>>> calllnfo.outparams (1]
[<SOAPpy.wstools.WSDLTools.Parameterinfo instance at OXOOCF3AF8>]
>>> calllnfo.outparams[0].name (2]

u'return’

>>> callinfo.outparams[0].type

(u'http://www.w3.0rg/2001/XMLSchema’, u'float')

Q The adjunct to callinfo.inparams for function arguments is callinfo.outparams for return value.
It is also a list, because functions called through SOAP can return multiple values, just like Python functions.

® Each Parameterinfo object contains name and type. This function returns a single value, named
return, which is a float.
Let's put it all together, and call a SOAP web service through a WSDL proxy.

Example 12.11. Calling A Web Service Through A WSDL Proxy

>>> from SOAPpy import WSDL
>>> wsdlFile = 'http://www.xmethods.net/sd/2001/TemperatureService.wsdl')
>>> server = WSDL.Proxy(wsdlIFile)

>>> server.getTemp('90210') (2]
66.0
>>> server.soapproxy.config.dumpSOAPOut = 1 (3]

>>> server.soapproxy.config.dumpSOAPIn = 1
>>> temperature = server.getTemp('90210')

Dive Into Python 175

*** Qutgoing SOAP

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmins:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmins:xsi="http://www.w3.0rg/1999/XMLSchema-instance"
xmins:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmins:xsd="http://www.w3.0rg/1999/XMLSchema">

<SOAP-ENV:Body>

<nsl:getTemp xmlIns:ns1="urn:xmethods-Temperature" SOAP-ENC:root="1">

<vl xsi:type="xsd:string">90210</v1>

</nsl:getTemp>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

*** Incoming SOAP

<?xml version='1.0" encoding='"UTF-8'?>

<SOAP-ENV:Envelope xmIns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmins:xsd="http://www.w3.0rg/2001/XMLSchema">

<SOAP-ENV:Body>

<nsl:getTempResponse xmins:ns1="urn:xmethods—-Temperature"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<return xsi:type="xsd:float">66.0</return>

</nsl:getTempResponse>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

>>> temperature
66.0

Q@ The configuration is simpler than calling the SOAP service directly, since the WSDL file contains the both
service URL and namespace you need to call the service. Creating the WSDL.Proxy object downloads the
WSDL file, parses it, and configures a SOAPProxy object that it uses to call the actual SOAP web service.

® Once the WSDL.Proxy object is created, you can call a function as easily as you did with the SOAPProxy
object. This is not surprising; the WSDL.Proxy is just a wrapper around the SOAPProxy with some
introspection methods added, so the syntax for calling functions is the same.

® You can access the WSDL.Proxy's SOAPProxy with server.soapproxy. This is useful to turning on
debugging, so that when you can call functions through the WSDL proxy, its SOAPProxy will dump the
outgoing and incoming XML documents that are going over the wire.

12.7. Searching Google

Let's finally turn to the sample code that you saw that the beginning of this chapter, which does something more ust
and exciting than get the current temperature.

Google provides a SOAP API for programmatically accessing Google search results. To use it, you will need to sigr
up for Google Web Services.

Procedure 12.4. Signing Up for Google Web Services

1. Go to http://www.google.com/apis/ and create a Google account. This requires only an email address. After
you sign up you will receive your Google API license key by email. You will need this key to pass as a
parameter whenever you call Google's search functions.

2. Also on http://www.google.com/apis/, download the Google Web APIs developer kit. This includes some
sample code in several programming languages (but not Python), and more importantly, it includes the WSI

Dive Into Python 176

http://www.google.com/apis/
http://www.google.com/apis/

file.
3. Decompress the developer kit file and find GoogleSearch.wsdl. Copy this file to some permanent
location on your local drive. You will need it later in this chapter.

Once you have your developer key and your Google WSDL file in a known place, you can start poking around with
Google Web Services.

Example 12.12. Introspecting Google Web Services

>>> from SOAPpy import WSDL

>>> server = WSDL.Proxy('/path/to/your/GoogleSearch.wsdl')

>>> server.methods.keys()

[u'doGoogleSearch’, u'doGetCachedPage’, u'doSpellingSuggestion’]

>>> calllnfo = server.methods['doGoogleSearch']

>>> for arg in calllnfo.inparams: (3]
print arg.name.ljust(15), arg.type

key (u'http://www.w3.0rg/2001/XMLSchema’, u'string’)

q (u'http://wvww.w3.0rg/2001/XMLSchema’, u'string')

start (u'http://www.w3.0rg/2001/XMLSchema’, u'int’)

maxResults (u'http://www.w3.0rg/2001/XMLSchema’, u'int’)

filter (u'http://www.w3.0rg/2001/XMLSchema’, u'’boolean’)

restrict (u'http://www.w3.0rg/2001/XMLSchema’, u'string’)

safeSearch (u'http://www.w3.0rg/2001/XMLSchema’, u'boolean’)

®oe

Ir (u'http://www.w3.0rg/2001/XMLSchema’, u'string’)
ie (u'http://mvww.w3.0rg/2001/XMLSchema’, u'string’)
oe (u'http://www.w3.0rg/2001/XMLSchema’, u'string’)

o Getting started with Google web services is easy: just create a WSDL.Proxy object and point it
at your local copy of Google's WSDL file.

(2 According to the WSDL file, Google offers three functions: doGoogleSearch,
doGetCachedPage, and doSpellingSuggestion. These do exactly what they sound
like: perform a Google search and return the results programmatically, get access to the cached
version of a page from the last time Google saw it, and offer spelling suggestions for commonly
misspelled search words.

® The doGoogleSearch function takes a number of parameters of various types. Note that
while the WSDL file can tell you what the arguments are called and what datatype they are, it
can't tell you what they mean or how to use them. It could theoretically tell you the acceptable
range of values for each parameter, if only specific values were allowed, but Google's WSDL
file is not that detailed. WSDL.Proxy can't work magic; it can only give you the information
provided in the WSDL file.

Here is a brief synopsis of all the parameters to the doGoogleSearch function:

» key — Your Google API key, which you received when you signed up for Google web services.

* g — The search word or phrase you're looking for. The syntax is exactly the same as Google's web form, so
you know any advanced search syntax or tricks, they all work here as well.

* start — The index of the result to start on. Like the interactive web version of Google, this function returns
10 results at a time. If you wanted to get the second "page" of results, you would set start to 10.

» maxResults — The number of results to return. Currently capped at 10, although you can specify fewer if
you are only interested in a few results and want to save a little bandwidth.

« filter — If True, Google will filter out duplicate pages from the results.

« restrict — Set this to country plus a country code to get results only from a particular country.
Example: countryUK to search pages in the United Kingdom. You can also specify linux, mac, or bsd to
search a Google-defined set of technical sites, or unclesam to search sites about the United States

Dive Into Python 177

government.
» safeSearch - If True, Google will filter out porn sites.
« Ir ("language restrict") — Set this to a language code to get results only in a particular language.
« ie and oe ("input encoding" and "output encoding") — Deprecated, both must be utf-8.

Example 12.13. Searching Google

>>> from SOAPpy import WSDL

>>> server = WSDL.Proxy('/path/to/your/GoogleSearch.wsdl')
>>> key = 'YOUR_GOOGLE_API_KEY'

>>> results = server.doGoogleSearch(key, 'mark’, 0, 10, False, ",

False, ", "utf-8", "utf-8") (1]
>>> len(results.resultElements) (2]
10
>>> results.resultElements[0].URL (3]

'http://diveintomark.org/'
>>> results.resultElements[0].title
‘dive into mark'

QO After setting up the WSDL.Proxy object, you can call server.doGoogleSearch with all ten parameters.
Remember to use your own Google API key that you received when you signed up for Google web services.

® There's a lot of information returned, but let's look at the actual search results first. They're stored in
results.resultElements, and you can access them just like a normal Python list.

® Each element in the resultElements is an object that has a URL, title, snippet, and other useful
attributes. At this point you can use normal Python introspection techniques like
dir(results.resultElements[0]) to see the available attributes. Or you can introspect through the
WSDL proxy object and look through the function's outparams. Each technique will give you the same
information.
The results object contains more than the actual search results. It also contains information about the search itself,
such as how long it took and how many results were found (even though only 10 were returned). The Google web
interface shows this information, and you can access it programmatically too.

Example 12.14. Accessing Secondary Information From Google

>>> results.searchTime (1]
0.224919
>>> results.estimatedTotalResultsCount (2]
29800000
>>> results.directoryCategories (3]

[<SOAPpy.Types.structType item at 14367400>:

{'fullViewableName":
"Top/Arts/Literature/World_Literature/American/19th_Century/Twain,_Mark’,
'specialEncoding’: "}]

>>> results.directoryCategories[0].fullViewableName

"Top/Arts/Literature/World_Literature/American/19th_Century/Twain, _Mark'

@ This search took 0.224919 seconds. That does not include the time spent sending and receiving
the actual SOAP XML documents. It's just the time that Google spent processing your request
once it received it.

® |n total, there were approximately 30 million results. You can access them 10 at a time by
changing the start parameter and calling server.doGoogleSearch again.

® Forsome queries, Google also returns a list of related categories in the Google Directory
(http://directory.google.com/). You can append these URLSs to http://directory.google.com/ to

Dive Into Python 178

http://directory.google.com/
http://directory.google.com/

construct the link to the directory category page.

12.8. Troubleshooting SOAP Web Services

Of course, the world of SOAP web services is not all happiness and light. Sometimes things go wrong.

As you've seen throughout this chapter, SOAP involves several layers. There's the HTTP layer, since SOAP is sen(
XML documents to, and receiving XML documents from, an HTTP server. So all the debugging techniques you
learned in Chapter 11, HTTP Web Services come into play here. Youopmanhttplib and then set
httplib.HTTPConnection.debuglevel = 1 to see the underlying HTTP traffic.

Beyond the underlying HTTP layer, there are a number of things that can go wrong. SOAPpy does an admirable jol
hiding the SOAP syntax from you, but that also means it can be difficult to determine where the problem is when
things don't work.

Here are a few examples of common mistakes that I've made in using SOAP web services, and the errors they
generated.

Example 12.15. Calling a Method With an Incorrectly Configured Proxy

>>> from SOAPpy import SOAPProxy
>>> url = 'http://services.xmethods.net:80/soap/servlet/rpcrouter'
>>> server = SOAPProxy(url)
>>> server.getTemp('27502")
<Fault SOAP-ENV:Server.BadTargetObjectURI:
Unable to determine object id from call: is the method element namespaced?>
Traceback (most recent call last):
File "<stdin>", line 1, in ?
File "c:\python23\Lib\site—packages\SOAPpy\Client.py", line 453, in __call__
return self.__r_call(*args, **kw)
File "c:\python23\Lib\site—packages\SOAPpy\Client.py", line 475, in __r_call
self.__hd, self.__ma)
File "c:\python23\Lib\site—packages\SOAPpy\Client.py", line 389, in __call
raise p
SOAPpy.Types.faultType: <Fault SOAP-ENV:Server.BadTargetObjectURI:
Unable to determine object id from call: is the method element nhamespaced?>

®oe

Q9 Did you spot the mistake? You're creating a SOAPProxy manually, and you've correctly

specified the service URL, but you haven't specified the namespace. Since multiple services

may be routed through the same service URL, the namespace is essential to determine which

service you're trying to talk to, and therefore which method you're really calling.
® The server responds by sending a SOAP Fault, which SOAPpy turns into a Python exception of

type SOAPpy.Types.faultType. All errors returned from any SOAP server will always

be SOAP Faults, so you can easily catch this exception. In this case, the human-readable part

of the SOAP Fault gives a clue to the problem: the method element is not namespaced, because

the original SOAPProxy object was not configured with a service namespace.
Misconfiguring the basic elements of the SOAP service is one of the problems that WSDL aims to solve. The WSDI
file contains the service URL and namespace, so you can't get it wrong. Of course, there are still other things you ¢
get wrong.

Example 12.16. Calling a Method With the Wrong Arguments

>>> wsdlFile = 'http://www.xmethods.net/sd/2001/TemperatureService.wsdl'

Dive Into Python 179

>>> server = WSDL.Proxy(wsdlFile)
>>> temperature = server.getTemp(27502)
<Fault SOAP-ENV:Server: Exception while handling service request:
services.temperature.TempService.getTemp(int) —— no signature match> (2]
Traceback (most recent call last):
File "<stdin>", line 1, in ?
File "c:\python23\Lib\site—packages\SOAPpy\Client.py", line 453, in __call
return self.__r_call(*args, **kw)
File "c:\python23\Lib\site—packages\SOAPpy\Client.py", line 475, in __r_call
self.__hd, self.__ma)
File "c:\python23\Lib\site—packages\SOAPpy\Client.py", line 389, in __call
raise p
SOAPpy.Types.faultType: <Fault SOAP-ENV:Server: Exception while handling service request:
services.temperature. TempService.getTemp(int) —— no signature match>

Q Dpid you spot the mistake? It's a subtle one: you're calling server.getTemp with an integer instead of a
string. As you saw from introspecting the WSDL file, the getTemp() SOAP function takes a single
argument, zipcode, which must be a string. WSDL.Proxy will not coerce datatypes for you; you need to
pass the exact datatypes that the server expects.

124 Again, the server returns a SOAP Fault, and the human-readable part of the error gives a clue as to the
problem: you're calling a getTemp function with an integer value, but there is no function defined with that
name that takes an integer. In theory, SOAP allows you to overload functions, so you could have two function
in the same SOAP service with the same name and the same number of arguments, but the arguments were
different datatypes. This is why it's important to match the datatypes exactly, and why WSDL.Proxy doesn't
coerce datatypes for you. If it did, you could end up calling a completely different function! Good luck
debugging that one. It's much easier to be picky about datatypes and fail as quickly as possible if you get ther
wrong.

It's also possible to write Python code that expects a different number of return values than the remote function

actually returns.

Example 12.17. Calling a Method and Expecting the Wrong Number of Return Values

>>> wsdlFile = 'http://www.xmethods.net/sd/2001/TemperatureService.wsdl'
>>> server = WSDL.Proxy(wsdlIFile)
>>> (city, temperature) = server.getTemp(27502) (1]
Traceback (most recent call last):

File "<stdin>", line 1, in ?
TypeError: unpack non-sequence

Q Dpid you spot the mistake? server.getTemp only returns one value, a float, but you've written code that
assumes you're getting two values and trying to assign them to two different variables. Note that this does not
fail with a SOAP fault. As far as the remote server is concerned, nothing went wrong at all. The error only
occurred after the SOAP transaction was complete, WSDL.Proxy returned a float, and your local Python
interpreter tried to accomodate your request to split it into two different variables. Since the function only
returned one value, you get a Python exception trying to split it, not a SOAP Fault.

What about Google's web service? The most common problem I've had with it is that | forget to set the application

key properly.

Example 12.18. Calling a Method With An Application—Specific Error

>>> from SOAPpy import WSDL

>>> server = WSDL.Proxy(r'/path/to/local/GoogleSearch.wsdl')

>>> results = server.doGoogleSearch('foo’, 'mark’, 0, 10, False, ", (1]
False, ", "utf-8", "utf-8")

Dive Into Python 180

<Fault SOAP-ENV:Server:
Exception from service object: Invalid authorization key: foo:
<SOAPpy.Types.structType detail at 14164616>:
{'stackTrace":
‘com.google.soap.search.GoogleSearchFault: Invalid authorization key: foo
at com.google.soap.search.QueryLimits.lookUpAndLoadFromINSIfNeedBe(
QueryLimits.java:220)
at com.google.soap.search.QueryLimits.validateKey(QueryLimits.java:127)
at com.google.soap.search.GoogleSearchService.doPublicMethodChecks(
GoogleSearchService.java:825)
at com.google.soap.search.GoogleSearchService.doGoogleSearch(
GoogleSearchService.java:121)
at sun.reflect. GeneratedMethodAccessor13.invoke(Unknown Source)
at sun.reflect.DelegatingMethodAccessorimpl.invoke(Unknown Source)
at java.lang.reflect.Method.invoke(Unknown Source)
at org.apache.soap.server.RPCRouter.invoke(RPCRouter.java:146)
at org.apache.soap.providers.RPCJavaProvider.invoke(
RPCJavaProvider.java:129)
at org.apache.soap.server.http.RPCRouterServlet.doPost(
RPCRouterServlet.java:288)
at javax.servlet.http.HttpServlet.service(HttpServlet.java:760)
at javax.servlet.http.HttpServlet.service(HttpServlet.java:853)
at com.google.gse.HttpConnection.runServlet(HttpConnection.java:237)
at com.google.gse.HttpConnection.run(HttpConnection.java:195)
at com.google.gse.DispatchQueue$WorkerThread.run(DispatchQueue.java:201)

Caused by: com.google.soap.search.UserKeylnvalidException: Key was of wrong size.

at com.google.soap.search.UserKey.<init>(UserKey.java:59)
at com.google.soap.search.QueryLimits.lookUpAndLoadFromINSIfNeedBe(
QueryLimits.java:217)
... 14 more
1>
Traceback (most recent call last):
File "<stdin>", line 1, in ?
File "c:\python23\Lib\site—packages\SOAPpy\Client.py", line 453, in __call__
return self.__r_call(*args, **kw)
File "c:\python23\Lib\site—packages\SOAPpy\Client.py", line 475, in __r_call
self.__hd, self.__ma)
File "c:\python23\Lib\site—packages\SOAPpy\Client.py", line 389, in __call
raise p

SOAPpy.Types.faultType: <Fault SOAP-ENV:Server: Exception from service object:

Invalid authorization key: foo:
<SOAPpy.Types.structType detail at 14164616>:
{'stackTrace":
‘com.google.soap.search.GoogleSearchFault: Invalid authorization key: foo
at com.google.soap.search.QueryLimits.lookUpAndLoadFromINSIfNeedBe(
QueryLimits.java:220)
at com.google.soap.search.QueryLimits.validateKey(QueryLimits.java:127)
at com.google.soap.search.GoogleSearchService.doPublicMethodChecks(
GoogleSearchService.java:825)
at com.google.soap.search.GoogleSearchService.doGoogleSearch(
GoogleSearchService.java:121)
at sun.reflect. GeneratedMethodAccessor13.invoke(Unknown Source)
at sun.reflect.DelegatingMethodAccessorimpl.invoke(Unknown Source)
at java.lang.reflect.Method.invoke(Unknown Source)
at org.apache.soap.server.RPCRouter.invoke(RPCRouter.java:146)
at org.apache.soap.providers.RPCJavaProvider.invoke(
RPCJavaProvider.java:129)
at org.apache.soap.server.http.RPCRouterServlet.doPost(
RPCRouterServlet.java:288)
at javax.servlet.http.HttpServlet.service(HttpServlet.java: 760)
at javax.servlet.http.HttpServlet.service(HttpServlet.java:853)
at com.google.gse.HttpConnection.runServlet(HttpConnection.java:237)
at com.google.gse.HttpConnection.run(HttpConnection.java:195)

Dive Into Python

181

at com.google.gse.DispatchQueue$WorkerThread.run(DispatchQueue.java:201)
Caused by: com.google.soap.search.UserKeylnvalidException: Key was of wrong size.
at com.google.soap.search.UserKey.<init>(UserKey.java:59)
at com.google.soap.search.QueryLimits.lookUpAndLoadFromINSIfNeedBe(
QueryLimits.java:217)
... 14 more

1>

Q can you spot the mistake? There's nothing wrong with the calling syntax, or the number of arguments, or the
datatypes. The problem is application—specific: the first argument is supposed to be my application key, but
foo is not a valid Google key.

® The Google server responds with a SOAP Fault and an incredibly long error message, which includes a
complete Java stack trace. Remember that all SOAP errors are signified by SOAP Faults: errors in
configuration, errors in function arguments, and application—specific errors like this. Buried in there
somewhere is the crucial piece of information: Invalid authorization key: foo.

Further Reading on Troubleshooting SOAP

* New developments for SOAPpy

(http://Imvww—-106.ibm.com/developerworks/webservices/library/ws—pyth17.html) steps through trying to
connect to another SOAP service that doesn't quite work as advertised.

12.9. Summary

SOAP web services are very complicated. The specification is very ambitious and tries to cover many different use
cases for web services. This chapter has touched on some of the simpler use cases.

Before diving into the next chapter, make sure you're comfortable doing all of these things:
« Connecting to a SOAP server and calling remote methods
 Loading a WSDL file and introspecting remote methods

» Debugging SOAP calls with wire traces
 Troubleshooting common SOAP-related errors

Dive Into Python 182

http://www-106.ibm.com/developerworks/webservices/library/ws-pyth17.html

Chapter 13. Unit Testing

13.1. Introduction to Roman numerals

In previous chapters, you "dived in" by immediately looking at code and trying to understand it as quickly as possibl
Now that you have some Python under your belt, you're going to step back and look at the steps that happen befor
code gets written.

In the next few chapters, you're going to write, debug, and optimize a set of utility functions to convert to and from
Roman numerals. You saw the mechanics of constructing and validating Roman numerals in Section 7.3, Case
Study: Roman Numerals , but now let's step back and consider what it would take to expand that into a two—-way
utility.

The rules for Roman numerals lead to a number of interesting observations:

1. There is only one correct way to represent a particular number as Roman numerals.

2.The converse is also true: if a string of characters is a valid Roman numeral, it represents only one number
(i.e. it can only be read one way).

3. There is a limited range of numbers that can be expressed as Roman numerals, specifically 1 through 3999
(The Romans did have several ways of expressing larger numbers, for instance by having a bar over a num
to represent that its normal value should be multiplied by 1000, but you're not going to deal with that. For the
purposes of this chapter, let's stipulate that Roman numerals go from 1 to 3999.)

4. There is no way to represent 0 in Roman numerals. (Amazingly, the ancient Romans had no concept of O as
number. Numbers were for counting things you had; how can you count what you don't have?)

5. There is no way to represent negative numbers in Roman numerals.

6. There is no way to represent fractions or non—integer numbers in Roman numerals.

Given all of this, what would you expect out of a set of functions to convert to and from Roman numerals?

roman.py requirements

1.toRoman should return the Roman numeral representation for all integers 1 to 3999.

2.toRoman should fail when given an integer outside the range 1 to 3999.

3.toRoman should fail when given a non—integer number.

4. fromRoman should take a valid Roman numeral and return the number that it represents.

5. fromRoman should fail when given an invalid Roman numeral.

6. If you take a number, convert it to Roman numerals, then convert that back to a number, you should end up
with the number you started with. So fromRoman(toRoman(n)) == n for all n in 1..3999.

7.toRoman should always return a Roman numeral using uppercase letters.

8. fromRoman should only accept uppercase Roman numerals (i.e. it should fail when given lowercase input).

Further reading
* This site (http://www.wilkiecollins.demon.co.uk/roman/front.htm) has more on Roman numerals, including a

fascinating history (http://www.wilkiecollins.demon.co.uk/roman/intro.htm) of how Romans and other
civilizations really used them (short answer: haphazardly and inconsistently).

Dive Into Python 183

http://www.wilkiecollins.demon.co.uk/roman/front.htm
http://www.wilkiecollins.demon.co.uk/roman/intro.htm

13.2. Diving in

Now that you've completely defined the behavior you expect from your conversion functions, you're going to do
something a little unexpected: you're going to write a test suite that puts these functions through their paces and mz
sure that they behave the way you want them to. You read that right: you're going to write code that tests code that
you haven't written yet.

This is called unit testing, since the set of two conversion functions can be written and tested as a unit, separate fro
any larger program they may become part of later. Python has a framework for unit testing, the appropriately—name
unittest module.

unittest is included with Python 2.1 and later. Python 2.0 users can download it from

pyunit.sourceforge.net (http://pyunit.sourceforge.net/).

Unit testing is an important part of an overall testing—centric development strategy. If you write unit tests, it is
important to write them early (preferably before writing the code that they test), and to keep them updated as code
requirements change. Unit testing is not a replacement for higher—level functional or system testing, but it is import:
in all phases of development:

 Before writing code, it forces you to detail your requirements in a useful fashion.

» While writing code, it keeps you from over—coding. When all the test cases pass, the function is complete.

» When refactoring code, it assures you that the new version behaves the same way as the old version.

* When maintaining code, it helps you cover your ass when someone comes screaming that your latest chang
broke their old code. ("But sir, all the unit tests passed when | checked itin...")

* When writing code in a team, it increases confidence that the code you're about to commit isn't going to bre:
other peoples' code, because you can run their unittests first. (I've seen this sort of thing in code sprints. A
team breaks up the assignment, everybody takes the specs for their task, writes unit tests for it, then shares
their unit tests with the rest of the team. That way, nobody goes off too far into developing code that won't
play well with others.)

13.3. Introducing romantest.py

This is the complete test suite for your Roman numeral conversion functions, which are yet to be written but will
eventually be in roman.py. It is not immediately obvious how it all fits together; none of these classes or methods
reference any of the others. There are good reasons for this, as you'll see shortly.

Example 13.1. romantest.py

If you have not already done so, you can download this and other examples
(http://diveintopython.org/download/diveintopython—-examples—5.4.zip) used in this book.

"""Unit test for roman.py

import roman
import unittest

class KnownValues(unittest. TestCase):
knownValues = ((1, '),
(2,1),
(3, ',
4, 'V,
6, 'V),

Dive Into Python 184

http://pyunit.sourceforge.net/
http://diveintopython.org/download/diveintopython-examples-5.4.zip

(6, VI,

(7, VI,

(8, VI,

(9, '1X),

(10, XY,

(50, L),

(100, 'C,

(500, 'D'),

(1000, 'M),

(31, 'XXXI'),

(148, 'CXLVIIIY,

(294, 'CCXCIV),

(312, 'CCCXIN),

(421, 'CDXXI"),

(528, 'DXXVIIIY,

(621, 'DCXXI),

(782, 'DCCLXXXII),
(870, 'DCCCLXX),
(941, 'CMXLIY),

(1043, 'MXLIIIY,

(1110, 'MCX),

(1226, 'MCCXXVI),
(1301, '"MCCCI),
(1485, 'MCDLXXXV'),
(1509, 'MDIXY),

(1607, 'MDCVIIY),
(1754, 'MDCCLIV'),
(1832, 'MDCCCXXXII),
(1993, 'MCMXCIII'),
(2074, MMLXXIV'),
(2152, 'MMCLIIY),
(2212, 'MMCCXII'),
(2343, 'MMCCCXLIIIY,
(2499, 'MMCDXCIX),
(2574, 'MMDLXXIV"),
(2646, 'MMDCXLVI),
(2723, 'MMDCCXXIII',
(2892, 'MMDCCCXCII"),
(2975, 'MMCMLXXV"),
(3051, 'MMMLI"),
(3185, 'MMMCLXXXV"),
(3250, 'MMMCCL)),
(3313, 'MMMCCCXIII),
(3408, 'MMMCDVIII),
(3501, 'MMMDI'),
(3610, 'MMMDCX),
(3743, 'MMMDCCXLIII'),

(3844, 'MMMDCCCXLIV'"),
(3888, 'MMMDCCCLXXXVIIIY),

(3940, 'MMMCMXL)),
(3999, 'MMMCMXCIX))

def testToRomanKnownValues(self):

toRoman should give known result with known input™™
for integer, numeral in self.knownValues:

result = roman.toRoman(integer)
self.assertEqual(numeral, result)

def testFromRomanKnownValues(self):

for integer, numeral in self.knownValues:
result = roman.fromRoman(numeral)

self.assertEqual(integer, result)

Dive Into Python

185

class ToRomanBadInput(unittest. TestCase):
def testTooLarge(self):

""toRoman should fail with large input

self.assertRaises(roman.OutOfRangeError, roman.toRoman, 4000)

def testZero(self):
""toRoman should fail with 0 input"™
self.assertRaises(roman.OutOfRangeError, roman.toRoman, 0)

def testNegative(self):
"""toRoman should fail with negative input
self.assertRaises(roman.OutOfRangeError, roman.toRoman, -1)

def testNonlInteger(self):
""toRoman should fail with non-integer input
self.assertRaises(roman.NotintegerError, roman.toRoman, 0.5)

class FromRomanBadInput(unittest. TestCase):
def testTooManyRepeatedNumerals(self):
""fromRoman should fail with too many repeated numerals
for sin (MMMM', 'DD', 'CCCC', 'LL', "XXXX', "VV', "lllI'):
self.assertRaises(roman.InvalidRomanNumeralError, roman.fromRoman, s)

def testRepeatedPairs(self):
""fromRoman should fail with repeated pairs of numerals™"
for s in (CMCM', 'CDCD', 'XCXC', "XLXL', 'IXIX', 'IVIV"):
self.assertRaises(roman.InvalidRomanNumeralError, roman.fromRoman, s)

def testMalformedAntecedent(self):
""fromRoman should fail with malformed antecedents
for siin (IIMXCC', 'VX', 'DCM', 'CMM', "IXIV",
'MCMC', 'XCX', 'IVI', 'LM', 'LD', 'LC"):
self.assertRaises(roman.InvalidRomanNumeralError, roman.fromRoman, s)

class SanityCheck(unittest.TestCase):
def testSanity(self):
""fromRoman(toRoman(n))==n for all n""
for integer in range(1, 4000):
numeral = roman.toRoman(integer)
result = roman.fromRoman(numeral)
self.assertEqual(integer, result)

class CaseCheck(unittest.TestCase):
def testToRomanCase(self):
""toRoman should always return uppercase
for integer in range(1, 4000):
numeral = roman.toRoman(integer)
self.assertEqual(numeral, numeral.upper())

def testFromRomanCase(self):
""fromRoman should only accept uppercase input
for integer in range(1, 4000):
numeral = roman.toRoman(integer)
roman.fromRoman(numeral.upper())
self.assertRaises(roman.InvalidRomanNumeralError,
roman.fromRoman, numeral.lower())

if _name__ =="_ main__"
unittest.main()

Further reading

Dive Into Python 186

« The PyUnit home page (http://pyunit.sourceforge.net/) has an in—depth discussion of using the unittest
framework (http://pyunit.sourceforge.net/pyunit.html), including advanced features not covered in this
chapter.

« The PyUnit FAQ (http://pyunit.sourceforge.net/pyunit.html) explains why test cases are stored separately
(http://pyunit.sourceforge.net/pyunit. ntmi#WHERE) from the code they test.

« Python Library Reference (http://www.python.org/doc/current/lib/) summarizes the unittest
(http://mvww.python.org/doc/current/lib/module-unittest.html) module.

« ExtremeProgramming.org (http://www.extremeprogramming.org/) discusses why you should write unit tests
(http://www.extremeprogramming.org/rules/unittests.html).

« The Portland Pattern Repository (http://www.c2.com/cgi/wiki) has an ongoing discussion of unit tests
(http:/Imwvww.c2.com/cgi/wiki?UnitTests), including a standard definition
(http:/imwvww.c2.com/cgi/wiki?StandardDefinitionOfUnitTest), why you should code unit tests first
(http://www.c2.com/cgi/wiki?CodeUnitTestFirst), and several in—depth case studies
(http:/iwww.c2.com/cgi/wiki?UnitTestTrial).

13.4. Testing for success

The most fundamental part of unit testing is constructing individual test cases. A test case answers a single questio
about the code it is testing.

A test case should be able to...

» ...run completely by itself, without any human input. Unit testing is about automation.

» ...determine by itself whether the function it is testing has passed or failed, without a human interpreting the
results.

e ...run in isolation, separate from any other test cases (even if they test the same functions). Each test case i
island.

Given that, let's build the first test case. You have the following requirement:

1.toRoman should return the Roman numeral representation for all integers 1 to 3999.

Example 13.2. testToRomanKnownValues

class KnownValues(unittest. TestCase): (1]
knownValues = ((1, 'l),

@),
(3, 'y,
@'V,
5,'V),
(6,'VI),
(7, v,
(8, v,
(9, '1X),
(10, X),
(50, 'L),
(100, 'CY,
(500, 'DY),
(2000, 'M"),
(31, "XXXI),
(148, 'CXLVIIIY,
(294, 'CCXCIV"),
(312, 'ccexin,
(421, 'CDXXI"),
(528, 'DXXVIIIY,

Dive Into Python 187

http://pyunit.sourceforge.net/
http://pyunit.sourceforge.net/pyunit.html
http://pyunit.sourceforge.net/pyunit.html
http://pyunit.sourceforge.net/pyunit.html#WHERE
http://www.python.org/doc/current/lib/
http://www.python.org/doc/current/lib/module-unittest.html
http://www.extremeprogramming.org/
http://www.extremeprogramming.org/rules/unittests.html
http://www.c2.com/cgi/wiki
http://www.c2.com/cgi/wiki?UnitTests
http://www.c2.com/cgi/wiki?StandardDefinitionOfUnitTest
http://www.c2.com/cgi/wiki?CodeUnitTestFirst
http://www.c2.com/cgi/wiki?UnitTestTrial

(621, 'DCXXIY),

(782, 'DCCLXXXII),
(870, 'DCCCLXX),
(941, 'CMXLIY),

(1043, "MXLIIIY,

(1110, 'MCX),

(1226, 'MCCXXVI),
(1301, 'MCCCI),

(1485, '"MCDLXXXV'),
(1509, 'MDIXY),

(1607, '"MDCVII'),
(1754, 'MDCCLIV'),
(1832, 'MDCCCXXXII),
(1993, 'MCMXCIIIY),
(2074, MMLXXIV'),
(2152, 'MMCLII",
(2212, 'MMCCXII'),
(2343, 'MMCCCXLIIIY),
(2499, 'MMCDXCIX),
(2574, "MMDLXXIV'),
(2646, 'MMDCXLVI),
(2723, 'MMDCCXXIII'),
(2892, 'MMDCCCXCII'),
(2975, 'MMCMLXXV"),
(3051, 'MMMLI"),

(3185, 'MMMCLXXXV"),
(3250, 'MMMCCL)),
(3313, 'MMMCCCXIII),
(3408, 'MMMCDVIII),
(3501, 'MMMDI'),
(3610, 'MMMDCX),
(3743, 'MMMDCCXLIII'),
(3844, 'MMMDCCCXLIV),
(3888, 'MMMDCCCLXXXVIIIY),
(3940, 'MMMCMXL)),

(3999, 'MMMCMXCIX?)) (2
def testToRomanKnownValues(self): (3]
""" toRoman should give known result with known input™™
for integer, numeral in self.knownValues:
result = roman.toRoman(integer) 006
self.assertEqual(numeral, result) (6]

@ 1o write a test case, first subclass the TestCase class of the unittest module. This class provides many
useful methods which you can use in your test case to test specific conditions.

® Thisis a list of integer/numeral pairs that | verified manually. It includes the lowest ten numbers, the highest
number, every number that translates to a single—character Roman numeral, and a random sampling of other
valid numbers. The point of a unit test is not to test every possible input, but to test a representative sample.

(3] Every individual test is its own method, which must take no parameters and return no value. If the method exi
normally without raising an exception, the test is considered passed; if the method raises an exception, the te
is considered failed.

© Here you call the actual toRoman function. (Well, the function hasn't be written yet, but once it is, this is the
line that will call it.) Notice that you have now defined the API for the toRoman function: it must take an
integer (the number to convert) and return a string (the Roman numeral representation). If the API is different
than that, this test is considered failed.

® Also notice that you are not trapping any exceptions when you call toRoman. This is intentional. toRoman
shouldn't raise an exception when you call it with valid input, and these input values are all valid. If toRoman
raises an exception, this test is considered failed.

Dive Into Python 188

16/ Assuming the toRoman function was defined correctly, called correctly, completed successfully, and returned
a value, the last step is to check whether it returned the right value. This is a common question, and the
TestCase class provides a method, assertEqual, to check whether two values are equal. If the result
returned from toRoman (result) does not match the known value you were expecting (numeral),
assertEqual will raise an exception and the test will fail. If the two values are equal, assertEqual will
do nothing. If every value returned from toRoman matches the known value you expect, assertEqual
never raises an exception, so testToRomanKnownValues eventually exits normally, which means
toRoman has passed this test.

13.5. Testing for failure

It is not enough to test that functions succeed when given good input; you must also test that they fail when given b
input. And not just any sort of failure; they must fail in the way you expect.

Remember the other requirements for toRoman:

2.toRoman should fail when given an integer outside the range 1 to 3999.
3. toRoman should fail when given a non—integer number.

In Python, functions indicate failure by raising exceptions, and the unittest module provides methods for testing
whether a function raises a particular exception when given bad input.

Example 13.3. Testing bad input to toRoman

class ToRomanBadInput(unittest. TestCase):
def testTooLarge(self):
""toRoman should fail with large input™"
self.assertRaises(roman.OutOfRangeError, roman.toRoman, 4000) (1]

def testZero(self):
"""toRoman should fail with 0 input™"
self.assertRaises(roman.OutOfRangeError, roman.toRoman, 0) (2]

def testNegative(self):
""toRoman should fail with negative input""
self.assertRaises(roman.OutOfRangeError, roman.toRoman, —1)

def testNonlInteger(self):

self.assertRaises(roman.NotintegerError, roman.toRoman, 0.5) (3]

© The TestCase class of the unittest provides the assertRaises method, which takes
the following arguments: the exception you're expecting, the function you're testing, and the
arguments you're passing that function. (If the function you're testing takes more than one
argument, pass them all to assertRaises, in order, and it will pass them right along to the
function you're testing.) Pay close attention to what you're doing here: instead of calling
toRoman directly and manually checking that it raises a particular exception (by wrapping it in
a try...except block), assertRaises has encapsulated all of that for us. All you do is
give it the exception (roman.OutOfRangeError), the function (toRoman), and
toRoman's arguments (4000), and assertRaises takes care of calling toRoman and
checking to make sure that it raises roman.OutOfRangeError. (Also note that you're
passing the toRoman function itself as an argument; you're not calling it, and you're not
passing the name of it as a string. Have | mentioned recently how handy it is that everything in
Python is an object, including functions and exceptions?)

Dive Into Python 189

124 Along with testing numbers that are too large, you need to test numbers that are too small.
Remember, Roman numerals cannot express 0 or negative numbers, so you have a test case for
each of those (testZero and testNegative). In testZero, you are testing that
toRoman raises a roman.OutOfRangeError exception when called with O; if it does not
raise a roman.OutOfRangeError (either because it returns an actual value, or because it
raises some other exception), this test is considered failed.

© Requirement #3 specifies that toRoman cannot accept a non-integer number, so here you test
to make sure that toRoman raises a roman.NotIntegerError exception when called
with 0.5. If toRoman does not raise a roman.NotIintegerError, this test is considered
failed.
The next two requirements are similar to the first three, except they apply to fromRoman instead of toRoman:

4. fromRoman should take a valid Roman numeral and return the number that it represents.
5. fromRoman should fail when given an invalid Roman numeral.

Requirement #4 is handled in the same way as requirement #1, iterating through a sampling of known values and
testing each in turn. Requirement #5 is handled in the same way as requirements #2 and #3, by testing a series of |
inputs and making sure fromRoman raises the appropriate exception.

Example 13.4. Testing bad input to fromRoman

class FromRomanBadInput(unittest. TestCase):
def testTooManyRepeatedNumerals(self):
"""fromRoman should fail with too many repeated numerals™"
for s in (MMMM', 'DD’, 'CCCC', 'LL', 'XXXX', "VV', "llll"):
self.assertRaises(roman.InvalidRomanNumeralError, roman.fromRoman, s) (1]

def testRepeatedPairs(self):
""fromRoman should fail with repeated pairs of numerals
for s in (CMCM', 'CDCD', 'XCXC', "XLXL', 'IXIX', 'IVIV"):
self.assertRaises(roman.InvalidRomanNumeralError, roman.fromRoman, s)

def testMalformedAntecedent(self):
"""fromRoman should fail with malformed antecedents
for s in (IIMXCC', 'VX', 'DCM', 'CMM', 'IXIV',
'MCMC', 'XCX', 'IVI', 'LM', 'LD', 'LC"):
self.assertRaises(roman.InvalidRomanNumeralError, roman.fromRoman, s)

@ Not much new to say about these; the pattern is exactly the same as the one you used to test bad input to
toRoman. | will briefly note that you have another exception: roman.InvalidRomanNumeralError.
That makes a total of three custom exceptions that will need to be defined in roman.py (along with
roman.OutOfRangeError and roman.NotintegerError). You'll see how to define these custom
exceptions when you actually start writing roman.py, later in this chapter.

13.6. Testing for sanity

Often, you will find that a unit of code contains a set of reciprocal functions, usually in the form of conversion
functions where one converts A to B and the other converts B to A. In these cases, it is useful to create a "sanity
check" to make sure that you can convert A to B and back to A without losing precision, incurring rounding errors, o
triggering any other sort of bug.

Consider this requirement:

Dive Into Python 190

6. If you take a number, convert it to Roman numerals, then convert that back to a number, you should end up
with the number you started with. So fromRoman(toRoman(n)) == n for all n in 1..3999.

Example 13.5. Testing toRoman against fromRoman

class SanityCheck(unittest.TestCase):
def testSanity(self):
""fromRoman(toRoman(n))==n for all n
for integer in range(1, 4000): (1 2]
numeral = roman.toRoman(integer)
result = roman.fromRoman(numeral)
self.assertEqual(integer, result) (3]

©® vou've seenthe range function before, but here it is called with two arguments, which returns a list
of integers starting at the first argument (1) and counting consecutively up to but not including the
second argument (4000). Thus, 1..3999, which is the valid range for converting to Roman
numerals.

e just wanted to mention in passing that integer is not a keyword in Python; here it's just a variable
name like any other.

® The actual testing logic here is straightforward: take a number (integer), convert it to a Roman
numeral (numeral), then convert it back to a number (result) and make sure you end up with the
same number you started with. If not, assertEqual will raise an exception and the test will
immediately be considered failed. If all the numbers match, assertEqual will always return
silently, the entire testSanity method will eventually return silently, and the test will be considered
passed.

The last two requirements are different from the others because they seem both arbitrary and trivial:

7.toRoman should always return a Roman numeral using uppercase letters.
8. fromRoman should only accept uppercase Roman numerals (i.e. it should fail when given lowercase input).

In fact, they are somewhat arbitrary. You could, for instance, have stipulated that fromRoman accept lowercase anc
mixed case input. But they are not completely arbitrary; if toRoman is always returning uppercase output, then
fromRoman must at least accept uppercase input, or the "sanity check" (requirement #6) would fail. The fact that it
only accepts uppercase input is arbitrary, but as any systems integrator will tell you, case always matters, so it's wo
specifying the behavior up front. And if it's worth specifying, it's worth testing.

Example 13.6. Testing for case

class CaseCheck(unittest.TestCase):
def testToRomanCase(self):
"""toRoman should always return uppercase
for integer in range(1, 4000):
numeral = roman.toRoman(integer)
self.assertEqual(numeral, numeral.upper()) (1]

def testFromRomanCase(self):
""fromRoman should only accept uppercase input™"
for integer in range(1, 4000):
numeral = roman.toRoman(integer)

roman.fromRoman(numeral.upper()) (23]
self.assertRaises(roman.InvalidRomanNumeralError,
roman.fromRoman, numeral.lower()) (4]

Dive Into Python 191

The most interesting thing about this test case is all the things it doesn't test. It doesn't test that the value
returned from toRoman is right or even consistent; those questions are answered by separate test cases. Yol
have a whole test case just to test for uppercase—ness. You might be tempted to combine this with the sanity
check, since both run through the entire range of values and call toRBIr&ut that would violate one of the
fundamental rules: each test case should answer only a single question. Imagine that you combined this case
check with the sanity check, and then that test case failed. You would need to do further analysis to figure out
which part of the test case failed to determine what the problem was. If you need to analyze the results of you
unit testing just to figure out what they mean, it's a sure sign that you've mis—designed your test cases.

There's a similar lesson to be learned here: even though "you know" that toRoman always returns uppercase,
you are explicitly converting its return value to uppercase here to test that fromRoman accepts uppercase
input. Why? Because the fact that toRoman always returns uppercase is an independent requirement. If you
changed that requirement so that, for instance, it always returned lowercase, the testToRomanCase test case
would need to change, but this test case would still work. This was another of the fundamental rules: each tes
case must be able to work in isolation from any of the others. Every test case is an island.

Note that you're not assigning the return value of fromRoman to anything. This is legal syntax in Python; if a
function returns a value but nobody's listening, Python just throws away the return value. In this case, that's
what you want. This test case doesn't test anything about the return value; it just tests that fromRoman accep
the uppercase input without raising an exception.

This is a complicated line, but it's very similar to what you did in the ToRomanBadInput and
FromRomanBadInput tests. You are testing to make sure that calling a particular function
(roman.fromRoman) with a particular value (numeral.lower(), the lowercase version of the current

Roman numeral in the loop) raises a particular exception (roman.InvalidRomanNumeralError). If it

does (each time through the loop), the test passes; if even one time it does something else (like raises a diffel
exception, or returning a value without raising an exception at all), the test fails.

In the next chapter, you'll see how to write code that passes these tests.

6] *| can resist everything except temptation." ——Oscar Wilde

Dive Into Python 192

Chapter 14. Test-First Programming

14.1. roman.py, stage 1

Now that the unit tests are complete, it's time to start writing the code that the test cases are attempting to test. You
going to do this in stages, so you can see all the unit tests fail, then watch them pass one by one as you fill in the g:
in roman.py.

Example 14.1. romanl.py
This file is available in py/roman/stagel/ in the examples directory.

If you have not already done so, you can download this and other examples
(http://diveintopython.org/download/diveintopython—examples—5.4.zip) used in this book.

"""Convert to and from Roman numerals"™

#Define exceptions

class RomanError(Exception): pass

class OutOfRangeError(RomanError): pass

class NotlntegerError(RomanError): pass

class InvalidRomanNumeralError(RomanError): pass

@ ©e

def toRoman(n):
""" convert integer to Roman numeral™"
pass (4

def fromRoman(s):

pass

® Thisis how you define your own custom exceptions in Python. Exceptions are classes, and
you create your own by subclassing existing exceptions. It is strongly recommended (but not
required) that you subclass Exception, which is the base class that all built—in exceptions
inherit from. Here | am defining RomanError (inherited from Exception) to act as the
base class for all my other custom exceptions to follow. This is a matter of style; | could just
as easily have inherited each individual exception from the Exception class directly.

® The OutOfRangeError and NotintegerError exceptions will eventually be used by
toRoman to flag various forms of invalid input, as specified in ToRomanBadInput.

® The InvalidRomanNumeralError exception will eventually be used by fromRoman
to flag invalid input, as specified in FromRomanBadInput.

O Atthis stage, you want to define the API of each of your functions, but you don't want to
code them yet, so you stub them out using the Python reserved word pass.

Now for the big moment (drum roll please): you're finally going to run the unit test against this stubby little module.
At this point, every test case should fail. In fact, if any test case passes in stage 1, you should go back to
romantest.py and re—evaluate why you coded a test so useless that it passes with do—nothing functions.

Run romantestl.py with the —v command-line option, which will give more verbose output so you can see

exactly what's going on as each test case runs. With any luck, your output should look like this:

Example 14.2. Output of romantestl.py against romanl.py

Dive Into Python 193

http://diveintopython.org/download/diveintopython-examples-5.4.zip

fromRoman should only accept uppercase input ... ERROR
toRoman should always return uppercase ... ERROR
fromRoman should fail with malformed antecedents ... FAIL
fromRoman should fail with repeated pairs of numerals ... FAIL
fromRoman should fail with too many repeated numerals ... FAIL
fromRoman should give known result with known input ... FAIL
toRoman should give known result with known input ... FAIL
fromRoman(toRoman(n))==n for all n ... FAIL

toRoman should fail with non—integer input ... FAIL

toRoman should fail with negative input ... FAIL

toRoman should fail with large input ... FAIL

toRoman should fail with O input ... FAIL

ERROR: fromRoman should only accept uppercase input

Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stagel\romantestl.py", line 154, in testFromRomanCase
romanl.fromRoman(numeral.upper())
AttributeError: 'None' object has no attribute 'upper’

ERROR: toRoman should always return uppercase

Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stagel\romantestl.py", line 148, in testToRomanCase
self.assertEqual(numeral, numeral.upper())
AttributeError: 'None' object has no attribute 'upper’

FAIL: fromRoman should fail with malformed antecedents

Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stagel\romantest1.py", line 133, in testMalformedAntecedent
self.assertRaises(romanl.InvalidRomanNumeralError, romanl.fromRoman, s)
File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName
AssertionError: InvalidRomanNumeralError

FAIL: fromRoman should fail with repeated pairs of numerals

Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stagel\romantest1l.py", line 127, in testRepeatedPairs
self.assertRaises(romanl.InvalidRomanNumeralError, romanl.fromRoman, s)
File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName
AssertionError: InvalidRomanNumeralError

FAIL: fromRoman should fail with too many repeated numerals

Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stagel\romantest1l.py", line 122, in testTooManyRepeatedNumerals
self.assertRaises(romanl.InvalidRomanNumeralError, romanl.fromRoman, s)
File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName
AssertionError: InvalidRomanNumeralError

FAIL: fromRoman should give known result with known input

Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stagel\romantest1l.py", line 99, in testfromRomanKnownValues
self.assertEqual(integer, result)
File "c:\python21\lib\unittest.py", line 273, in failUnlessEqual
raise self.failureException, (msg or '%s != %s' % (first, second))
AssertionError: 1 1= None

Dive Into Python 194

FAIL: toRoman should give known result with known input

Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stagel\romantest1l.py", line 93, in testToRomanKnownValues
self.assertEqual(numeral, result)
File "c:\python21\lib\unittest.py", line 273, in failUnlessEqual
raise self.failureException, (msg or '%s != %s' % (first, second))
AssertionError: | = None

FAIL: fromRoman(toRoman(n))==n for all n

Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stagel\romantest1.py", line 141, in testSanity
self.assertEqual(integer, result)
File "c:\python21\lib\unittest.py", line 273, in failUnlessEqual
raise self.failureException, (msg or '%s != %s' % (first, second))
AssertionError: 1 = None

FAIL: toRoman should fail with non-integer input

Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stagel\romantest1.py", line 116, in testNonInteger
self.assertRaises(romanl.NotintegerError, romanl.toRoman, 0.5)
File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName
AssertionError: NotintegerError

FAIL: toRoman should fail with negative input

Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stagel\romantest1l.py", line 112, in testNegative
self.assertRaises(romanl.0OutOfRangeError, romanl.toRoman, —1)
File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName
AssertionError: OutOfRangeError

FAIL: toRoman should fail with large input

Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stagel\romantest1.py", line 104, in testToolLarge
self.assertRaises(romanl.OutOfRangeError, romanl.toRoman, 4000)
File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName
AssertionError: OutOfRangeError

FAIL: toRoman should fail with O input (1]

Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stagel\romantestl.py", line 108, in testZero
self.assertRaises(romanl.0OutOfRangeError, romanl.toRoman, 0)
File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName

AssertionError: OutOfRangeError (2]
Ran 12 tests in 0.040s (3]
FAILED (failures=10, errors=2) (4

® Running the script runs unittest.main(), which runs each test case, which is to say each method defined
in each class within romantest.py. For each test case, it prints out the doc string of the method and
whether that test passed or failed. As expected, none of the test cases passed.

Dive Into Python 195

® For each failed test case, unittest displays the trace information showing exactly what happened. In this
case, the call to assertRaises (also called failUnlessRaises) raised an AssertionError because
it was expecting toRoman to raise an OutOfRangeError and it didn't.

After the detail, unittest displays a summary of how many tests were performed and how long it took.

Overall, the unit test failed because at least one test case did not pass. When a test case doesn't pass,
unittest distinguishes between failures and errors. A failure is a call to an assertXYZ method, like

asserteEqual or assertRaises, that fails because the asserted condition is not true or the expected

exception was not raised. An error is any other sort of exception raised in the code you're testing or the unit te
case itself. For instance, the testFrromRomanCase method (“fromRoman should only accept uppercase
input") was an error, because the call to numeral.upper() raised an AttributeError exception,

because toRoman was supposed to return a string but didn't. But testZero ("toRoman should fail with O
input") was a failure, because the call to fromRoman did not raise the InvalidRomanNumeral exception

that assertRaises was looking for.

14.2. roman.py, stage 2

L~)

Now that you have the framework of the roman module laid out, it's time to start writing code and passing test case:

Example 14.3. roman2.py
This file is available in py/roman/stage2/ in the examples directory.

If you have not already done so, you can download this and other examples
(http://diveintopython.org/download/diveintopython—examples—5.4.zip) used in this book.

"""Convert to and from Roman numerals"™

#Define exceptions

class RomanError(Exception): pass

class OutOfRangeError(RomanError): pass

class NotintegerError(RomanError): pass

class InvalidRomanNumeralError(RomanError): pass

#Define digit mapping

romanNumeralMap = (('M', 1000), 1]
('CM', 900),
(D', 500),
('CD', 400),
(‘'C, 100),
('XC', 90),
(L', 50),
('XL', 40),
(X', 10),
(1X,9),
('Vlv 5)1
(V' 4),
(r, 1)

def toRoman(n):
""" convert integer to Roman numeral™"
result=""
for numeral, integer in romanNumeralMap:
while n >= integer:
result += numeral
n —= integer
return result

Dive Into Python 196

http://diveintopython.org/download/diveintopython-examples-5.4.zip

def fromRoman(s):

pass
o romanNumeralMap is a tuple of tuples which defines three things:

1. The character representations of the most basic Roman numerals. Note that this is not just the
single—character Roman numerals; you're also defining two—character pairs like CM ("one hundred les
than one thousand"); this will make the toRoman code simpler later.

2. The order of the Roman numerals. They are listed in descending value order, from M all the way dowr
to l.

3. The value of each Roman numeral. Each inner tuple is a pair of (numeral, value).

® Here's where your rich data structure pays off, because you don't need any special logic to handle the
subtraction rule. To convert to Roman numerals, you simply iterate through romanNumeralMap looking for
the largest integer value less than or equal to the input. Once found, you add the Roman numeral representat
to the end of the output, subtract the corresponding integer value from the input, lather, rinse, repeat.

Example 14.4. How toRoman works

If you're not clear how toRoman works, add a print statement to the end of the while loop:

while n >= integer:
result += numeral
n —= integer
print 'subtracting’, integer, 'from input, adding', numeral, 'to output'

>>> import roman2

>>> roman2.toRoman(1424)

subtracting 1000 from input, adding M to output
subtracting 400 from input, adding CD to output
subtracting 10 from input, adding X to output
subtracting 10 from input, adding X to output
subtracting 4 from input, adding IV to output
'MCDXXIV'

So toRoman appears to work, at least in this manual spot check. But will it pass the unit testing? Well no, not
entirely.

Example 14.5. Output of romantest2.py against roman2.py
Remember to run romantest2.py with the —-v command-line flag to enable verbose mode.

fromRoman should only accept uppercase input ... FAIL

toRoman should always return uppercase ... ok (1]
fromRoman should fail with malformed antecedents ... FAIL

fromRoman should fail with repeated pairs of numerals ... FAIL

fromRoman should fail with too many repeated numerals ... FAIL

fromRoman should give known result with known input ... FAIL

toRoman should give known result with known input ... ok (2]
fromRoman(toRoman(n))==n for all n ... FAIL
toRoman should fail with non—integer input ... FAIL (3]

toRoman should fail with negative input ... FAIL
toRoman should fail with large input ... FAIL
toRoman should fail with O input ... FAIL

Dive Into Python 197

@ toRoman does, in fact, always return uppercase, because romanNumeralMap defines the Roman numeral
representations as uppercase. So this test passes already.

@ Here'sthe big news: this version of the toRoman function passes the known values test. Remember, it's not
comprehensive, but it does put the function through its paces with a variety of good inputs, including inputs th
produce every single—character Roman numeral, the largest possible input (3999), and the input that produce
the longest possible Roman numeral (3888). At this point, you can be reasonably confident that the function
works for any good input value you could throw at it.

(3] However, the function does not "work" for bad values; it fails every single bad input test. That makes sense,

because you didn't include any checks for bad input. Those test cases look for specific exceptions to be raiset
(via assertRaises), and you're never raising them. You'll do that in the next stage.

Here's the rest of the output of the unit test, listing the details of all the failures. You're down to 10.

FAIL: fromRoman should only accept uppercase input

Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stage2\romantest2.py", line 156, in testFromRomanCase
roman2.fromRoman, numeral.lower())
File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName
AssertionError: InvalidRomanNumeralError

FAIL: fromRoman should fail with malformed antecedents

Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stage2\romantest2.py", line 133, in testMalformedAntecedent
self.assertRaises(roman2.InvalidRomanNumeralError, roman2.fromRoman, s)
File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName
AssertionError: InvalidRomanNumeralError

FAIL: fromRoman should fail with repeated pairs of numerals

Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stage2\romantest2.py", line 127, in testRepeatedPairs
self.assertRaises(roman2.InvalidRomanNumeralError, roman2.fromRoman, s)
File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName
AssertionError: InvalidRomanNumeralError

FAIL: fromRoman should fail with too many repeated numerals

Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stage2\romantest2.py", line 122, in testTooManyRepeatedNumerals
self.assertRaises(roman2.InvalidRomanNumeralError, roman2.fromRoman, s)
File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName
AssertionError: InvalidRomanNumeralError

FAIL: fromRoman should give known result with known input

Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stage2\romantest2.py", line 99, in testfromRomanKnownValues
self.assertEqual(integer, result)
File "c:\python21\lib\unittest.py", line 273, in failUnlessEqual
raise self.failureException, (msg or '%s != %s' % (first, second))
AssertionError: 1 1= None

FAIL: fromRoman(toRoman(n))==n for all n

Dive Into Python 198

Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stage2\romantest2.py", line 141, in testSanity
self.assertEqual(integer, result)
File "c:\python21\lib\unittest.py", line 273, in failUnlessEqual
raise self.failureException, (msg or '%s != %s' % (first, second))
AssertionError: 1 = None

FAIL: toRoman should fail with non—integer input

Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stage2\romantest2.py", line 116, in testNonInteger
self.assertRaises(roman2.NotintegerError, roman2.toRoman, 0.5)
File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName
AssertionError: NotintegerError

FAIL: toRoman should fail with negative input

Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stage2\romantest2.py", line 112, in testNegative
self.assertRaises(roman2.0OutOfRangeError, roman2.toRoman, —1)
File "c:\python21\lib\unittest.py", line 266, in failUnlessRaises
raise self.failureException, excName
AssertionError: OutOfRangeError

FAIL: toRoman should fail with large input

Traceback (most recent call last):
File "C:\docbook\dip\py\roman\stage2\romantest2.py", line 104, in testTooLarge
self.assertRaises(roman2.0OutOfRangeError, roman2.toRoman, 4000)
File "c:\python21\lib\unittest.py", line 266, in failUnl